Team:Edinburgh/Wiki Watch
From 2011.igem.org
(Difference between revisions)
Line 71: | Line 71: | ||
|- | |- | ||
| [[Team:GeorgiaState | GeorgiaState]] | | [[Team:GeorgiaState | GeorgiaState]] | ||
- | | | + | | BioBricks from ''[http://en.wikipedia.org/wiki/Pichia_pastoris Pichia pastoris]'' promoters. Characterise with GFP. |
|- | |- | ||
| [[Team:GeorgiaTech | GeorgiaTech]] | | [[Team:GeorgiaTech | GeorgiaTech]] |
Revision as of 14:49, 1 September 2011
Wiki Watch
spying, and I ask that this be taken into account in deciding my verdict.
— Witold Pilecki
In order to help collaboration between teams, as well as for our own enlightenment, we put together the following list of projects. This page is now linked from the Community page, and we hope others have found it useful.
Also, you might check [http://igemwatch.net/ Dr Tom Ellis's blog] for descriptions of some projects.
Americas | |
Team | Notes |
Alberta | Converting biomass to biodiesel using [http://en.wikipedia.org/wiki/Neurospora_crassa Neurospora crassa]. |
Arizona State | Countering antibiotic resistance with [http://en.wikipedia.org/wiki/CRISPR CRISPR]. |
Baltimore | Creation of a [http://en.wikipedia.org/wiki/Taq_polymerase Taq polymerase] BioBrick. |
Bard-Annandale | Logical construct involving quorum sensing and Lux genes. |
Berkeley | Stress-repressed promoter in front of stress-producing (toxic) product to regulate its level. |
British Columbia | Production of [http://en.wikipedia.org/wiki/Monoterpene monoterpenes] in yeast, to investigate their anti-fungal properties. |
Brown-Stanford | Mars! [http://en.wikipedia.org/wiki/Sporosarcina_pasteurii S. pasteurii] to make calcium carbonate; biosensor; cyanobacteria/E. coli symbiosis. |
BU Wellesley Software | (Software) Involves plasmid design, recombinases, and tuberculosis? |
BYU Provo | AND gate: OxyR (input: H2O2) + [http://en.wikipedia.org/wiki/Riboswitch riboswitch] (input: high temperature). Output via [http://en.wikipedia.org/wiki/Cre-Lox_recombination Cre-Lox]. |
Calgary | Biosensor for [http://en.wikipedia.org/wiki/Naphthenic_acid naphthenic acids]. |
Caltech | Bioremediation of organic pollutants, especially [http://en.wikipedia.org/wiki/Endocrine_disruptor endocrine disruptors]. |
Colombia | E. coli that recognise fungal pathogens by their [http://en.wikipedia.org/wiki/Chitin chitin], and destroy it or induce plant defenses. |
Columbia-Cooper | Using metal-binding peptides to form [http://en.wikipedia.org/wiki/Quantum_dot quantum dots]. |
Cornell | E. coli that will lyse themselves upon receiving some specific light wavelength. |
Duke | |
Gaston Day School | Nitrate detector with output as Red Fluorescent Protein. |
GeorgiaState | BioBricks from [http://en.wikipedia.org/wiki/Pichia_pastoris Pichia pastoris] promoters. Characterise with GFP. |
GeorgiaTech | Countering antibiotic resistance with [http://en.wikipedia.org/wiki/CRISPR CRISPR]. |
Grinnell | Secretion of [http://en.wikipedia/org/wiki/biofilm biofilm]-degrading compounds from [http://en.wikipedia.org/wiki/Caulobacter_crescentus Caulobacter crescentus]. |
Harvard | Improved targetting of gene therapy using [http://en.wikipedia.org/wiki/Zinc_finger zinc finger] DNA binding proteins. |
Hunter-NYC | Removal of metal ions from contaminated water, using lipase secretion tag. |
ITESM Mexico | [http://en.wikipedia.org/wiki/Arabinose Arabinose] biosensor with (concentration dependent) output using GFP or CFP. |
IvyTech-South Bend | Arsenic biosensor with output via smell. May use E. coli or S. cerevisiae. |
Johns Hopkins | Production of vitamins and minerals in S. cerevisiae. |
Lethbridge | Bioremediation e.g. of heavy metals. |
McGill | Control of mammalian cells using light. |
Michigan | Bind DNA-binding protein to E. coli membrane; attach to surfaces that have oligonucleotides. |
Minnesota | Light-induced silicatein fused to ompA or Ice Nucleation Protein for 3D printing. |
Missouri Miners | Alteration of [http://ecoliwiki.net/colipedia/index.php/ompR ompR] system to activate at different glucose concentrations. |
MIT | Mammalian [http://en.wikipedia.org/wiki/Juxtacrine_signalling juxtacrine signalling] and [http://en.wikipedia.org/wiki/G_protein-coupled_receptor G protein-coupled receptors]. |
Nevada | Sugar production from cyanobacteria, to feed E. coli that make biofuel. |
Northwestern | Detection of [http://en.wikipedia.org/wiki/Pseudomonas_aeruginosa Pseudomonas aeruginosa] by using its quorum sensing system. |
NYC Software | (Software) Genome analysis focusing on radiation tolerance. |
NYC Wetware | Making E. coli radiotolerant by using genes from [http://en.wikipedia.org/wiki/Deinococcus_radiodurans Deinococcus radiodurans]. |
Panama | Synthesis of rhamnolipids. |
Penn | Cell-cell communication via light. |
Penn State | Radiation detector using Phage Lambda lytic switch system. |
Purdue | Bistable toggle switch using [http://en.wikipedia.org/wiki/Phytochrome phytochromes]. |
Queens Canada | Using [http://en.wikipedia.org/wiki/C._elegans the worm] for sensing pollutants by swimming to them. |
Rutgers | Bacteria responding to lasers; addition of numbers in bacteria; BioBrick validation. |
Tec-Monterrey | Production of high fructose syrup using membrane-bound fusion proteins. |
Toronto | Incorporating a magnetosome system into E. coli? |
TorontoMaRSDiscovery | |
UANL Mty-Mexico | Logic gates taking light signals as inputs. |
UCSF | Production of biofilms with S. cerevisiae, by cell display of adhesive proteins. |
UC Davis | Mutagenesis on promoters and repressors to produce new behaviours. |
UIUC-Illinois | Different plasmids in a cell; choose which is active by making one go to high copy number. |
UNAM-Genomics Mexico | Hydrogen production in [http://en.wikipedia.org/wiki/Rhizobium_etli Rhizobium etli] in [http://en.wikipedia.org/wiki/Phaseolus_vulgaris Phaseolus vulgaris]. |
UNAM-ITESM Mexico City | Rubber-degrading bacteria. |
UNICAMP-EMSE Brazil | Detect mammal's stress by [http://en.wikipedia.org/wiki/Catecholamine catecholamines] and [http://en.wikipedia.org/wiki/Nitric_oxide nitric oxide]; regulate it with [http://en.wikipedia.org/wiki/Cytokine cytokines]. |
uOttawa | Improving S. cerevisiae for use with BioBricks. |
USC | Countering antibiotic resistance with [http://en.wikipedia.org/wiki/CRISPR CRISPR]. |
Utah State | Production of valuable compounds using the cyanobacterium [http://en.wikipedia.org/wiki/Synechocystis Synechocystis]. |
UTP-Panama | Various. |
UT Dallas | Repair of human tissue using bacteria. |
VCU | Various projects involving the cyanobacterium [http://en.wikipedia.org/wiki/Synechococcus Synechococcus elongatus]. |
Virginia | Using S. cerevisiae to produce factors which heal human wounds. |
Virginia Tech | Fluorescent proteins that fold and degrade quickly, to be used as reporters. |
Washington | Alkanes in E. coli; luciferase in yeast; [http://en.wikipedia.org/wiki/Gluten gluten]-cleaving enzyme; [http://en.wikipedia.org/wiki/Magnetosome magnetosomes] in E. coli. |
WashU | [http://en.wikipedia.org/wiki/Carotene B-Carotene] and [http://en.wikipedia.org/wiki/Ionone B-Ionone] production in S. cerevisiae. |
Waterloo | Creation of ribozymes that will excise out of an RNA transcript. |
West Point | Detect Vibrio cholerae by letting it lyse E. coli, releasing β-galactosidase. |
Wisconsin-Madison | Biosensors to detect biofuels? |
Yale | Production of antifreeze using E. coli and a gene from the Rhagium inquisitor beetle. |
Asia | |
Team | Notes |
ArtScienceBangalore | |
CBNU-Korea | Synthesising a minimal chromosome; somehow involving [http://en.wikipedia.org/wiki/Vibrio_cholerae V. cholerae]. |
CTGU-Yichang | |
Fudan-Shanghai | Nitrate detection; switching between different colour production; something else. |
HIT-Harbin | Yoghurt bacteria that stop producing acid once the yoghurt is acidic enough. |
HKU-Hong Kong | Silencing specific genes with a modified histone-like nucleoid structuring protein. |
HKUST-Hong Kong | Degrading [http://en.wikipedia.org/wiki/Indole indole] using toluene-4-monooxygenase, to boost antibiotic susceptibility. |
HokkaidoU Japan | Type III secretion system to inject stuff into eukaryotic cells. |
Hong Kong-CUHK | Light-driven ion pump to produce electricity. |
HSU | |
HUST-China | Modification of gut-colonising bacteria to degrade alcohol and prevent people being drunk. |
IIT Madras | Modular biosensors. |
KAIST-Korea | Artistic E. coli, expressing fluorescence in response to quorum sensing molecules. |
KAIT Japan | |
KIT-Kyoto | Using quorum sensing to turn on and off GFP expression for aesthetic purposes. |
Korea U Seoul | Production of [http://en.wikipedia.org/wiki/Alkane alkanes] from glucose. |
Kyoto | Attracting insects with light, trapping them with gum, and digesting them. |
Macquarie Australia | "Bacterial light switch" involving [http://en.wikipedia.org/wiki/Phytochrome bacteriaphytochrome] and [http://en.wikipedia.org/wiki/Heme_oxygenase heme oxygenase]. |
Nanjing | |
NCTU Formosa | Temperature controlled expression; testing with [http://en.wikipedia.org/wiki/Carotenoid carotenoid], violacein, and [http://en.wikipedia.org/wiki/Butanol butanol] synthesis. |
NYMU-Taipei | Something involving magnetosomes to transduce a signal; also DNA for information storage. |
Osaka | Radiation dosimeter using DNA repair systems to detect radiation. |
OUC-China | Promotion and inhibition of bacterial strains by each other. |
Peking R | Something involving [http://en.wikipedia.org/wiki/Riboswitch riboswitches] and synthetic ribosome binding sites. |
Peking S | Something with cell-cell communication. |
Rajasthan | |
SJTU-BioX-Shanghai | Translational control. |
SYSU-China | Bacteria that move towards ionising radiation and absorb radioisotopes. |
Tianjin | Adjusting the yeast TOR (Target Of Rapamycin) protein to aid survival in [http://en.wikipedia.org/wiki/Lignocellulose lignocellulose]. |
Tokyo-NoKoGen | Bacteria that absorb radioactive [http://en.wikipedia.org/wiki/Caesium caesium]. |
Tokyo Metropolitan | Killer E. coli that swim to some "target" and kill it. |
Tokyo Tech | Rock/Paper/Scissors bacteria; urea production; [http://en.wikipedia.org/wiki/Isoprene isoprene] for cloud seeding. |
Tsinghua | Something involving movement of proteins. |
Tsinghua-A | Oscillation between red and green fluorescence, using quorum sensing. |
TzuChiU Formosa | Conversion of CO to CO2 using [http://en.wikipedia.org/wiki/Carbon_monoxide_dehydrogenase carbon monoxide dehydrogenase] in [http://en.wikipedia.org/wiki/Rhodospirillum_rubrum Rhodospirillum rubrum]. |
UNIST Korea | An organism which will kill itself upon escape from the lab. |
UQ-Australia | 24-hour bacterial oscillator. |
UST-Beijing | Bile acid sensor involving [http://en.wikipedia.org/wiki/Liver_X_receptor_beta LXR-Β]. |
USTC-China | "Self-organized bacteria"; project involves [http://en.wikipedia.org/wiki/Riboswitch riboswitches]. |
USTC-Software | (Software) Visual tool for analysing dynamics of biological systems. |
UT-Tokyo | Bacteria that respond to stress by creating a signal, which other bacteria swim towards. |
VIT Vellore | Enteric bacteria producing drugs or other compounds for the body. |
Waseda-Japan | Something involving responding to different colours of light. |
WHU-China | Bacterial communication with light; also colour photography using E. coli. |
XMU-China | Something involving GFP. |
ZJU-China | Something involving using biofilms. |
Europe | |
Team | Notes |
Amsterdam | Make E. coli psychrophilic (cold loving). |
BCCS-Bristol | |
Bielefeld-Germany | Cell-free biosensor for bisphenol A. |
Bilkent UNAM Turkey | Production of protein from algae e.g. [http://en.wikipedia.org/wiki/Chlamydomonas_reinhardtii Chlamydomonas reinhardtii]. |
Cambridge | Bacterial expression of [http://en.wikipedia.org/wiki/Reflectin reflectins] from Loligo squid. |
CongoDRC-Bel Campus | Vaccine for [http://en.wikipedia.org/wiki/Mycobacterium_ulcerans Mycobacterium ulcerans]. |
Copenhagen | Removal of pharmaceutical products from water with [http://en.wikipedia.org/wiki/Cytochrome_P450 cytochrome P450]. |
Debrecen Hungary | |
DTU-Denmark | Using sRNA for post-transcriptional regulation. |
Dundee | Creation of [http://en.wikipedia.org/wiki/Bacterial_microcompartment bacterial microcompartments]. |
Edinburgh | Display of cellulases on M13 (via pVIII) or on cell surface (via Ice Nucleation Protein). |
ENSPS-Strasbourg | |
EPF-Lausanne | Creation of new [http://en.wikipedia.org/wiki/Transcription_factor transcription factors]. |
ETH Zurich | Biological smoke detector by detection of [http://en.wikipedia.org/wiki/Acetaldehyde acetaldehyde]. |
Fatih Turkey | Using [http://en.wikipedia.org/wiki/B._subtilis B. subtilis] to detect E. coli? |
Freiburg | A cheaper system for protein purification. |
Glasgow | Light-controlled expression of bacteria inside biofilms. |
Grenoble | Determination of metal concentration by growing reporter bacteria on an IPTG gradient. |
Groningen | Remember that an input has occurred; use a biological [http://en.wikipedia.org/wiki/AND_gate AND gate] to count occurrences. |
Imperial College London | Something involving [http://en.wikipedia.org/wiki/Auxin auxin], and dealing with soil erosion. |
KULeuven | Creation and prevention of ice with Ice Nucleation Protein and Anti Freeze Protein. |
LMU-Munich | Metal biosensors with a focus on quantification. |
Lyon-INSA-ENS | Biofilter for radioactive waste. |
METU-Ankara | Methane biosensor and methane conversion into methanol. |
METU-BIN Ankara | (Software) Web based tool for construct planning. |
METU Turkey SoftLab | |
Nairobi | Engineering a fungus to kill insects. |
NTNU Trondheim | Detection of bacterial stress; based on the E. coli "[http://en.wikipedia.org/wiki/Stringent_response stringent response]" which produces ppGpp. |
Paris Bettencourt | Passing signals e.g. RNA from cell to cell via nanotubes. |
Potsdam Bioware | Directed evolution of cyclic peptides for therapeutics. Use phage display, error-prone PCR. |
Sevilla | Biological circuits using multiple different genotypes at once. |
Strathclyde Glasgow | |
St Andrews | Production of anti-microbial peptides in E. coli to kill bacteria. |
TU-Delft | Expressing mussel glue protein in E. coli to attach to stuff, with inducible detachment. |
TU Munich | 3D printing by immobilising E. coli in a gel; turn on genes iff 2 different colour lasers hit. |
UCL London | Using [http://en.wikipedia.org/wiki/DNA_gyrase gyrase] to increase supercoiling of plasmids. |
UEA-JIC Norwich | Glow-in-the-dark bacteria, protists, and moss. |
ULB-Brussels | Tools for inserting or deleting genes in the main E. coli chromosome. |
UNIPV-Pavia | Regulating a quorum sensing molecule by negative feedback. |
UNITS Trieste | Synthetic biome where bacteria and eukaryotic cells depend on each other to survive. |
UPO-Sevilla | Biological memory with bistable toggle switches. |
Uppsala-Sweden | Light-induced gene expression. |
UTP-Poland | |
Valencia | Production of antimicrobial peptides to clean up drinking water. |
Wageningen UR | Oscillating, synchronised gene expression in E. coli, and communication along fungal [http://en.wikipedia.org/wiki/Hypha hyphae]. |
Warsaw | Cell-free cloning using [http://www.neb.com/nebecomm/products/productM0269.asp phi29 DNA polymerase]; also insertion of stuff into main genome. |
WITS-CSIR SA | E. coli that search for a ligand then, upon finding it, return to a point of origin and report. |