Team:TU-Delft/Project

From 2011.igem.org

(Difference between revisions)
Line 1: Line 1:
{{TU-header3}}
{{TU-header3}}
__NOTOC__
__NOTOC__
-
 
+
<html>
       <div style="margin-left:0; position:relative; width:900px; z-index:5; " id="body_layer" >
       <div style="margin-left:0; position:relative; width:900px; z-index:5; " id="body_layer" >
           <div style="height:0; line-height:0; " class="bumper" >&nbsp;</div>
           <div style="height:0; line-height:0; " class="bumper" >&nbsp;</div>
Line 8: Line 8:
             <div class="text-content style_External_507_2475" style="padding:0; " >
             <div class="text-content style_External_507_2475" style="padding:0; " >
           <div class="style_2" >
           <div class="style_2" >
-
 
+
</html>
=='''Project Overview''' ==
=='''Project Overview''' ==
  [[File:TU-Delft_websiteopvulplaatje4.png|right|x200px]]
  [[File:TU-Delft_websiteopvulplaatje4.png|right|x200px]]

Revision as of 12:17, 26 July 2011



TUDelft Logo2 TUDelft Logo2 TUDelft Logo2 TUDelft Logo2 TUDelft Logo2 TUDelft Logo2

 
 

Project Overview

TU-Delft websiteopvulplaatje4.png

Our aim of competing in the 2011 iGEM competition is to engineer a bacterial strain to give it new properties in order to achieve controllable adhesion of microbial reactors. The main theme to achieve this aim is to control cell-cell attachment and cell-surface attachment in such a way that it is applicable for industry and fundamental research.

In our project we strive for full control of the attachment and detachment of cells. In nature attachment consists of a complex network involving an extracellular matrix containing a wide variety of compounds. This complexity has hindered easy regulation. We will give Escherichia coli a much simpler but equally effective way of binding: mussel glue. Expressing the strongest protein responsible for the attachment of mussels to rocks, we can allow E. coli to strongly attach to even glass and plastic, whenever we want it, and subsequently releasing it again. This system should be viewed in the same category as “ the wheel”, by itself it is just a neat trick, but combination is key. Combining it for example with an E. coli capable biocatalytic conversion , one can create microbial production lines, use attachment for temporary rapid settling of biomass before product removal, or achieve fundamental premiers like bacterial cells forming a micro circle on command.

Workflow

Our workflow has been designed in such a way that each project is individual and independent. All the projects however contribute to one greater project.

TUDelft-Horizontal Workflow.jpg

In March we started by gathering project ideas with the team members, advisors, and supervisors. In April we did a lot of research on bioadhesion and mussel foot proteins. In May we started with sponsoring and working on our wiki. In June we designed our first BioBrick. We did some modeling and worked out our lab plan. Also, we made a plan to make the Dutch society aware of synthetic biology. Now, in July, we go on with al the subprojects we started. By the end of September, we hope to have succeeded in all our separate projects and reached our goal on scientific level. We hope to have a good modeling plan, well characterized Biobricks, a fruitful collaboration with other iGEM teams and the Rathenau Institute and wonderful exposition in the Science Centre.

</div> </div>

Back to iGEM.org