|
|
(43 intermediate revisions not shown) |
Line 1: |
Line 1: |
- | {{TU-header}} | + | {{TU-header3}} |
- | | + | |
| __NOTOC__ | | __NOTOC__ |
- | <!-- *** What falls between these lines is the Alert Box! You can remove it from your pages once you have read and understood the alert *** -->
| |
- |
| |
| <html> | | <html> |
- | <div id="box" style="width: 700px; margin-left: 137px; padding: 5px; border: 3px solid #000; background-color: #fe2b33;">
| |
- | <div id="template" style="text-align: center; font-weight: bold; font-size: large; color: #f6f6f6; padding: 5px;">
| |
- | This is a template page. READ THESE INSTRUCTIONS.
| |
- | </div>
| |
| | | |
- | <div id="warning" style="text-align: center; font-weight: bold; font-size: small; color: #f6f6f6; padding: 5px;"> | + | |
- | You <strong>MUST</strong> have a team description page, a project abstract, a complete project description, a lab notebook, and a safety page. PLEASE keep all of your pages within your teams namespace.
| + | <div style="text-align:center; " > |
- | </div>
| + | <div style="background-color:#FFFFFF; text-align:left; width:900px; margin:4px auto 10px auto; " id="body_content" > |
- | </div>
| + | <Br><Br> |
| </html> | | </html> |
| + | =='''StickE. Coli : Single Protein Attachment of Escherichia coli''' == |
| + | [[File:TU-Delft_websiteopvulplaatje4.png|right|x200px]] |
| | | |
| + | <p> |
| + | Natural attachment of micro-organisms relies on a complex network of varying compounds known as biofilms. This complexity hinders an easy control and regulation of attachment and detachment. We will give Escherichia coli a simple, effective and controllable mechanism for biofilm formation, based on the strong glue from mussel feet. E. coli, expressing the strongest-binding mussel foot protein Mfp5 on the outer cell surface, can robustly attach to a wide variety of surfaces, including glass, plastic and itself.<br/> |
| | | |
| + | Using highly sensitive TIRF microscopy and atomic force measurements we visualize and characterize the localization and attachment of cells. Combining these results with our mathematical models allows us to predict the attachment speed and stability as well as cell clustering and settling. The controllable, strong attachment opens up new possibilities for the use of bacterial machines in environmental applications, medicine and industry. |
| | | |
- | <!-- *** End of the alert box *** -->
| + | ===Workflow=== |
- | | + | Our workflow has been designed in such a way that each project is individual and independent. All the projects however can enhance each-other and contribute to one greater project. |
- | {|align="justify"
| + | |
- | |You can write a background of your team here. Give us a background of your team, the members, etc. Or tell us more about something of your choosing.
| + | |
- | | + | |
- | |-
| + | |
- | |
| + | |
- | ''Tell us more about your project. Give us background. Use this is the abstract of your project. Be descriptive but concise (1-2 paragraphs)''
| + | |
- | | + | |
- | |-
| + | |
- | |
| + | |
- | |align="center"|[[Team:TU-Delft | Team Example]]
| + | |
- | |}
| + | |
- | | + | |
- | <!--- The Mission, Experiments --->
| + | |
- | | + | |
- | {| style="color:#1b2c8a;background-color:#0c6;" cellpadding="3" cellspacing="1" border="1" bordercolor="#fff" width="62%" align="center"
| + | |
- | !align="center"|[[Team:TU-Delft|Home]]
| + | |
- | !align="center"|[[Team:TU-Delft/Team|Team]]
| + | |
- | !align="center"|[https://igem.org/Team.cgi?year=2010&team_name=TU-Delft Official Team Profile]
| + | |
- | !align="center"|[[Team:TU-Delft/Project|Project]]
| + | |
- | !align="center"|[[Team:TU-Delft/Parts|Parts Submitted to the Registry]]
| + | |
- | !align="center"|[[Team:TU-Delft/Modeling|Modeling]]
| + | |
- | !align="center"|[[Team:TU-Delft/Notebook|Notebook]]
| + | |
- | !align="center"|[[Team:TU-Delft/Safety|Safety]]
| + | |
- | !align="center"|[[Team:TU-Delft/Attributions|Attributions]]
| + | |
- | |}
| + | |
- | | + | |
- | | + | |
- | | + | |
- | | + | |
- | == '''Overall project''' ==
| + | |
- | | + | |
- | In life one is bound to encounter problems. Nature knows this more than any other and her problem-solving ingenuity is impressive. With synthetic biology we are able to combine the best of all Nature's solutions. Designing these combinations with utility for humans in mind results in so-called “Genetically Engineered Machines”, the core of iGEM.
| + | |
- | | + | |
- | In our project we strive for full control of the attachment and detachment of cells. In nature attachment consists of a complex network involving an extracellular matrix containing a wide variety of compounds. This complexity has hindered easy regulation. We will give Escherichia coli a much simpler but equally effective way of binding: mussel glue. Expressing the strongest protein responsible for the attachment of mussels to rocks, we can allow E coli to strongly attach to even glass and plastic, whenever we want it, and subsequently releasing it again. This system should be viewed in the same category as “ the wheel”, by itself it is just a neat trick, but combination is key. Combining it for example with an E coli capable biocatalytic conversion , one can create microbial production lines, use attachment for temporary rapid settling of biomass before product removal, or achieve fundamental premiers like bacterial cells forming a micro circle on command.
| + | |
- | | + | |
- | == Project Details==
| + | |
- | | + | |
- | | + | |
- | | + | |
- | | + | |
- | | + | |
- | === Part 2 ===
| + | |
- | | + | |
- | | + | |
- | | + | |
- | | + | |
- | | + | |
- | === The Experiments ===
| + | |
- | | + | |
- | | + | |
- | | + | |
- | | + | |
- | === Part 3 ===
| + | |
- | | + | |
| | | |
| + | [[File:TUDelft-Horizontal_Workflow.jpg]] |
| | | |
| + | In March we started by gathering project ideas with the team members, advisors, and supervisors. In April we did a lot of research on bio-adhesion and mussel foot proteins. In May we started with sponsoring and working on our wiki. In June we designed our first BioBrick. We did some modelling and worked on our lab plan. Also, we made a plan to make the Dutch society aware of synthetic biology. Now, in July, we continue with all the subprojects we started. By the end of September, we hope to have succeeded in all our separate projects and reached our goal on a scientific level. We hope to have a good modeling plan, well characterized Biobricks, a fruitful collaboration with other iGEM teams and the Rathenau Institute and a wonderful exposition in the Science Centre. |
| | | |
- | == Results ==
| |
| | | |
| {{TU-footer}} | | {{TU-footer}} |