|
|
(8 intermediate revisions not shown) |
Line 1: |
Line 1: |
- | {{TU-header3}} | + | [[Media:Example.ogg]]{{TU-header3}} |
| __NOTOC__ | | __NOTOC__ |
| <html> | | <html> |
| <body style="background-image:initial; background-repeat-x:no-repeat; background-repeat-y:no-repeat; background-repeat:no-repeat; background-attachment:initial; background-position:initial initial; background-position-x:initial; background-position-y:initial; background-origin:initial; background-clip:initial; background-color:#656565; margin:0pt; " onload="onPageLoad();" onunload="onPageUnload();" > | | <body style="background-image:initial; background-repeat-x:no-repeat; background-repeat-y:no-repeat; background-repeat:no-repeat; background-attachment:initial; background-position:initial initial; background-position-x:initial; background-position-y:initial; background-origin:initial; background-clip:initial; background-color:#656565; margin:0pt; " onload="onPageLoad();" onunload="onPageUnload();" > |
| <div style="text-align:center; " > | | <div style="text-align:center; " > |
- | <div style="background-color:#FFFFFF; text-align:left; width:900px; margin:10px auto 10px auto; " id="body_content" > | + | <div style="background-color:#FFFFFF; text-align:left; width:900px; margin:4px auto 10px auto; " id="body_content" > |
| </html> | | </html> |
| | | |
| | | |
- | =='''Safety proposal''' == | + | =='''Overview''' == |
| | | |
| + | [[File:Biohazard pic 2 .jpg|400px|right]] |
| | | |
- | '''''Biosafety regulations'''''
| + | <br> |
| | | |
| + | Working with biological material is essential to take under consideration issues like biosafety and biosecurity. Biosafety is the prevention of large-scale loss of biological material, such as pathogens and toxins, unintentionally or accidentally, focusing both on ecology and human health. So, biosafety is mostly focused on the biological nature of the organism than the nature of the treat. |
| | | |
- | Since 1997 Dr. L.A. (Lesley) Robertson is the Biological Safety Officer (BSO) of the Faculty of Applies Sciences of Delft University of Technology, she manages biological safety issues. She has knowledge of the laboratory practices and procedures within the faculty and oversees the biological safety program of the faculty.
| + | On the other hand, when we are talking about biological material intentional release, abuse, or any other new threat (i.e. new artificial bacteria, or robots), biosecurity is the most relevant field, which addresses these complex treats. |
| | | |
- | Our faculty has ML-1 laboratories and one ML-2 laboratory, but we are only allowed to work in ML-1 labs for which the basic microbiology laboratory rules apply. Internationally, there are strict rules on genetically modified organisms (GMO). A license is required to be allowed to work with GMO’s. Only if the risks to humans and the environment are minimal to negligible, the government grants a license. The rules for working with GMO’s have to be followed by the laboratory researchers. For each laboratory one person is responsible for the compliance to the rules on that specific lab. Dr. L.A. Robertson has the final responsibility for all the labs. This means that she always knows what biological material is used, where and by whom.
| + | As a result, while, as an iGEM team, we are working in a biological lab, it was very important to take all the necessary precautions and explorations into account. So in our Safety Proposal page we address all the risks, safety and security concerns correlated to Synthetic Biology and our project, but additionally we are giving our view about future issues that may arise. Finally, in this page we also give our aspect on biological safety questions raised by iGEM. |
| | | |
- | Before you are allowed to work in a laboratory you have to pass a Biosafety Test, which includes identifying of possible hazards in a lab, and doing a so called “washing test”. This includes all the basic rules for researches to be allowed to work on the lab. All team members passed this test successfully!!! Afterwards she explained us under which permits our project is conducted and which permits we should verify to be sure it is allowed.
| + | <br> |
| | | |
- | Therefore, a research proposal was provided to Dr. L.A. Robertson. The research proposal included a table containing the micro-organisms, plasmids and existing BioBricks we intended to use. To ensure that we’ll work within the permit, there are two lists which state all the allowed vectors and hosts. These lists are provided, just like the permit, by the Dutch Ministry of Housing, Spatial planning and the environment. During the writing of our research proposal, we constantly verified in these lists if our plans were allowed. After Dr. L.A. Robertson read or research proposal and verified all the vectors and hosts, she gave us the permission for our project. Now we can finally start our project, informing our BSO Dr. L.A. Robertson regularly on our progression in the lab and what we are planning to do in the near future.
| + | '''Read also about:''' |
| | | |
| + | <html><a href="https://2011.igem.org/Team:TU-Delft/Project/Safety/Safety-proposal">Safety proposal</a></html> |
| | | |
- | '''''“Safety Issues” related to our Project'''''
| |
- |
| |
- |
| |
- | =====Our Parts:=====
| |
- |
| |
- | Although, working for iGEM is a great opportunity to design your “amazing” new organism and have fun doing that, as in every scientific project, there are also safety issues that have to be taken seriously into account. It was very important for us, during the whole design of our iGEM project, to take into consideration all the safety parameters that our project and especially our parts could raise.
| |
- |
| |
- | Because, by regulation we are permitted to work only in ML-1 laboratories, we were aware that we will not work with hazardous and infectious host organisms and genes. Specifically, all the genes and devices that we use should be subject to regulations laid down by the Dutch Government. In our faculty of Applied Sciences and more specifically in Kluyver Laboratory of TU Delft, our team is allowed to work only in ML-1 laboratories with organisms labelled H1 and parts which are originated from non-infectious organisms by the regulation. All of them are already commercially used systems. As a result, all the parts we will construct can be considered as harmless. All our ideas and plans are verified and approved by our BSO. (Biological Safety Officer)
| |
- |
| |
- |
| |
- | =====Researchers’ safety:=====
| |
- |
| |
- | Another safety aspect that we have to be aware of is our own safety in the laboratory, the so called “researchers’ safety”. In this case, we had to verify the safety of our biological material but also the safety of all the techniques and chemicals that we intended to use.
| |
- |
| |
- | As mentioned earlier, all our organisms are classified as Risk Group 1, which contains microorganisms with no recogna. While working in ML-1 laboratories, we have to deal with strains which are indicated that they have low existent virulence; however it is not non-existent virulence. These microorganisms are considered not to be hazardous for healthy persons. However, organisms labelled H1 have been shown some infectiveness for immunocompromized persons. This seems not to be a problem in our case, because luckily all team members can be considered healthy adults.
| |
- |
| |
- | On the other hand, regarding the laboratory techniques and chemicals that we are planning to use, there are some aspects that we have to be careful about. For our own safety in the lab we need to be careful with materials such as Bisacrylamide (cross-linking agent for the preparation of polyacrylamide gels) and ethyl bromide (chemical compound of the haloalkanes group). These materials are regarded as “dangerous, potentially carcinogenic substances”. Nevertheless, if everybody works according to a good laboratory practice, there will be no risks involved.
| |
- |
| |
- |
| |
- | =====Environmental and public safety:=====
| |
- |
| |
- | Last but not least, the environmental and public safety was one of the most serious considerations of ours. In our project, the most important issue we had to consider about was the choice of the host organisms that we decided to use.
| |
- |
| |
- | The strain that we use is the E.coli strain K12, which is a specifically weakened laboratory strain. This strain is well-adapted to the laboratory environment, and unlike wild type strains, has lost its ability to compete with natural organisms outside of the laboratory and in human organism. Therefore our E.coli strain does not pose a threat to the public or the environment.
| |
- |
| |
- | Finally because our project is basically targeted in fundamental and industrial purposes, the organisms are not designed to be released in the environment! The organisms are designed to be used in a closed system, which of course involve specific rules. This makes our current contribution in synthetic biology lacking of environmental risk.
| |
- |
| |
- |
| |
- | '''''Biosafety for the “FUTURE”'''''
| |
- |
| |
- |
| |
- | The iGEM competition should keep working with well-known organisms. Off course projects, where the toxicity of organisms can be studied and be regulated, may be also very interesting and with huge contribution in the scientific field that we represent. However, it should be well contained and guided by experienced supervisors and scientists. Students should be well informed on lab regulations, especially when working as interdisciplinary teams.
| |
- |
| |
- | A categorized and government controlled system of lab experienced certificates should be implemented. This is already in place for nuclear laboratories, but not yet for the biohazard laboratories. This would give more clarity about who is capable to work in such environments, creating also the awareness that these hazards deserve.
| |
- |
| |
- | An obvious solution is to confirm Event Tree Analysis (ETA) and Fault Tree Analysis (FTA) as a compulsory part of the iGEM-designing phase. This will significantly limit the risks of all iGEM projects and student will learn to take Biosafety issues into account already before they are going to work in the laboratory. Also for the Biosafety point of view and as mentioned above, in engineering of organisms it is recommended well-known microorganism to be used. The reason is because there is more knowledge on how internal systems work and intertwine. This will make an ETA and an FTA more effective and therefore the risks will be reduced.
| |
- |
| |
- | The last years it is well known the existence of a serious debate about the field of synthetic biology, and generally about genetic engineering, and what this area can offer. The way that public addresses that issue, is based in the personal knowledge and opinion that every one of us has for the idea of GMOs but it also depends on the media exposure of the topic. It is a novel and “exotic” technique, something that is not naturally occurred. This fact seems to be the source of the majority of the conflicts. People believe in catastrophic consequences and in the lack of benefits that this area can offer.
| |
- |
| |
- | The most of the times, this is the result of the limited and sometimes negative overall media coverage of the topic. The iGEM contest, representing the new generation of scientist working on the field of Genetic Engineering, should make synthetic biology issues more clear to the public.
| |
- |
| |
- | It is our task while working on iGEM to send out the correct view to the public about the field of synthetic biology and a very straight and easy way to do this is the proper communication between the media and scientists. As a result, it is very important the media and the public to be approached carefully and be informed properly. Without reason negative media attention should be prevented, but it should also be our duty never to cover up the truth and be aware of the consequences that we can create as scientists!
| |
| <html> | | <html> |
| <br><br> | | <br><br> |
| </html> | | </html> |
| {{TU-footer}} | | {{TU-footer}} |