Team:Cambridge/Project

From 2011.igem.org

(Difference between revisions)
(Project breakdown)
(Project breakdown)
Line 9: Line 9:
We broke down our project into clear stages, with highly focussed objectives for each. Here, we outline how our plans were designed and modified in order to achieve each objective to as high a standard as possible. Our [experiments] are also put into context via links in this section.
We broke down our project into clear stages, with highly focussed objectives for each. Here, we outline how our plans were designed and modified in order to achieve each objective to as high a standard as possible. Our [experiments] are also put into context via links in this section.
-
*[https://2011.igem.org/Team:Cambridge/Project/prelim Preliminary observations]
+
*[https://2011.igem.org/Team:Cambridge/Project/prelim Preliminary observations] - confocal microscopy of native squid reflectin
*[https://2011.igem.org/Team:Cambridge/Project/objective_one Objective One] - expression of recombinant reflectin in E. coli
*[https://2011.igem.org/Team:Cambridge/Project/objective_one Objective One] - expression of recombinant reflectin in E. coli
 +
*[https://2011.igem.org/Team:Cambridge/Project/objective_two Objective Two] - Purification of recombinant reflectin
=='''References'''==
=='''References'''==

Revision as of 16:32, 10 August 2011

Loading...
OVERVIEW
home

Bactiridescence is a project based around the unique properties of reflectin, a squid protein with the highest refractive index of any known proteinaceous substance. In squid this protein forms complex platelets which act as [http://en.wikipedia.org/wiki/Distributed_Bragg_reflector Bragg reflectors] to provide camouflage. We aim to express reflectin in E. coli and optimise the optical properties in order to build the groundwork for the manipulation of living structural colour. Read more about reflectin and structural colour here.

Project breakdown

We broke down our project into clear stages, with highly focussed objectives for each. Here, we outline how our plans were designed and modified in order to achieve each objective to as high a standard as possible. Our [experiments] are also put into context via links in this section.

References

[http://www.nature.com/nmat/journal/v6/n7/abs/nmat1930.html] Kramer et al.The self-organizing properties of squid reflectin protein Nature Materials 533-538 VOL6 JULY 2007
[http://www.sciencemag.org/content/303/5655/235.short] Crookes et al.Reflectins: The Unusual Proteins of Squid Reflective Tissues SCIENCE 235-238 VOL303 9 JANUARY 2004
[http://www.sciencedirect.com/science/article/pii/S0142961209011442] Morse et al.The role of protein assembly in dynamically tunable bio-optical tissues Biomaterials 793-801 VOL31 FEBRUARY 2010
[http://www.publish.csiro.au/paper/ZO9920319.html] Griffiths et al. Iridophores in the mantle of giant clams. Australian Journal of Zoology (1992) Volume: 40, Issue: 3 Pages: 319-326
[http://www.ncbi.nlm.nih.gov/pubmed/19776150] Izumi et al. Changes in reflectin protein phosphorylation are associated with dynamic iridescence in squid. J. R. Soc. Interface 6 March 2010 vol. 7 no. 44 549-560
[http://www.springerlink.com/content/bba14b73ad35f495/]Brocco et al. Reflector cells in the skin of Octopus dofleini Cell and Tissue Research, Volume 205, Number 2, 167-186, 1980