Team:UEA-JIC Norwich/Project

From 2011.igem.org

(Difference between revisions)
Line 8: Line 8:
<p style="color:#FFFFFF">For our project we wished to introduce two new model organisms: <i>Chlamydomonas reinhardtii</i> and <i>Physcomitrella patens</i>, an algae and a moss, respectively. Both are eukaryotic, photosynthetic organisms. At present, the majority of iGEM model organisms, and therefore the majority of the biobrick parts submitted to the registry, are prokaryotic. While these are often invaluable for a multitude of situations, such as testing protein function, they can never definitively clarify how a given gene will be expressed in a eukaryotic organism. Species specific responses to promoters, a different codon bias, or methylation can all have an adverse effect on expression, as well as a variety of other contributing factors. The use of Biobricks as an easy way of genetically manipulating organisms could one day prove to be a vital tool in the adaptation of eukaryotic species commonly used in instances such as human agriculture. The Moss and Algae we are introducing will pave the way for including plant species in the iGEM competition. We felt this would be a good direction for iGEM to take as plant genetics will always be a vital area of research for the future, impacting on areas such as crop growth, drug production and combating global warming. </p>
<p style="color:#FFFFFF">For our project we wished to introduce two new model organisms: <i>Chlamydomonas reinhardtii</i> and <i>Physcomitrella patens</i>, an algae and a moss, respectively. Both are eukaryotic, photosynthetic organisms. At present, the majority of iGEM model organisms, and therefore the majority of the biobrick parts submitted to the registry, are prokaryotic. While these are often invaluable for a multitude of situations, such as testing protein function, they can never definitively clarify how a given gene will be expressed in a eukaryotic organism. Species specific responses to promoters, a different codon bias, or methylation can all have an adverse effect on expression, as well as a variety of other contributing factors. The use of Biobricks as an easy way of genetically manipulating organisms could one day prove to be a vital tool in the adaptation of eukaryotic species commonly used in instances such as human agriculture. The Moss and Algae we are introducing will pave the way for including plant species in the iGEM competition. We felt this would be a good direction for iGEM to take as plant genetics will always be a vital area of research for the future, impacting on areas such as crop growth, drug production and combating global warming. </p>
-
<p>We plan to introduce two new destination plasmids, one for Moss, and one for Algae. These will consist of the 2011 iGEM plasmid complete with chloramphenicol resistance, and both will contain the current iGEM prefix and suffix. They will contain selection markers which can be universally used. We plan to submit a range of Biobricks within these two plasmids. These will include promoters, terminators, reporters, generators and composites. We will be testing around 60 of the current iGEM Biobricks in our two organisms and selecting those that work to be submitted. Of those that fail in our two organisms, we will attempt to either optimise them or place them behind promoters specific to each species to try and increase their expression. We also plan to introduce a series of promoters specific to our two species in these plasmids for future iGEM competitions to use. We plan to focus most on light production in the algae and moss as an example of the ability to use the Biobrick structures in these organisms. </p>
+
<p style="color:#FFFFFF">We plan to introduce two new destination plasmids, one for Moss, and one for Algae. These will consist of the 2011 iGEM plasmid complete with chloramphenicol resistance, and both will contain the current iGEM prefix and suffix. They will contain selection markers which can be universally used. We plan to submit a range of Biobricks within these two plasmids. These will include promoters, terminators, reporters, generators and composites. We will be testing around 60 of the current iGEM Biobricks in our two organisms and selecting those that work to be submitted. Of those that fail in our two organisms, we will attempt to either optimise them or place them behind promoters specific to each species to try and increase their expression. We also plan to introduce a series of promoters specific to our two species in these plasmids for future iGEM competitions to use. We plan to focus most on light production in the algae and moss as an example of the ability to use the Biobrick structures in these organisms. </p>
<h2>Our Model Organisms</h2>
<h2>Our Model Organisms</h2>

Revision as of 13:05, 29 July 2011

University of East Anglia-JIC

UNIVERSITY OF EAST ANGLIA-JOHN INNES CENTRE

Project Abstract.

For our project we wished to introduce two new model organisms: Chlamydomonas reinhardtii and Physcomitrella patens, an algae and a moss, respectively. Both are eukaryotic, photosynthetic organisms. At present, the majority of iGEM model organisms, and therefore the majority of the biobrick parts submitted to the registry, are prokaryotic. While these are often invaluable for a multitude of situations, such as testing protein function, they can never definitively clarify how a given gene will be expressed in a eukaryotic organism. Species specific responses to promoters, a different codon bias, or methylation can all have an adverse effect on expression, as well as a variety of other contributing factors. The use of Biobricks as an easy way of genetically manipulating organisms could one day prove to be a vital tool in the adaptation of eukaryotic species commonly used in instances such as human agriculture. The Moss and Algae we are introducing will pave the way for including plant species in the iGEM competition. We felt this would be a good direction for iGEM to take as plant genetics will always be a vital area of research for the future, impacting on areas such as crop growth, drug production and combating global warming.

We plan to introduce two new destination plasmids, one for Moss, and one for Algae. These will consist of the 2011 iGEM plasmid complete with chloramphenicol resistance, and both will contain the current iGEM prefix and suffix. They will contain selection markers which can be universally used. We plan to submit a range of Biobricks within these two plasmids. These will include promoters, terminators, reporters, generators and composites. We will be testing around 60 of the current iGEM Biobricks in our two organisms and selecting those that work to be submitted. Of those that fail in our two organisms, we will attempt to either optimise them or place them behind promoters specific to each species to try and increase their expression. We also plan to introduce a series of promoters specific to our two species in these plasmids for future iGEM competitions to use. We plan to focus most on light production in the algae and moss as an example of the ability to use the Biobrick structures in these organisms.

Our Model Organisms

Escherichia coli.

This is a single celled species of bacteria. It is a prokaryotic model organism. It is easily transformable, either by: electroporation or the use of unorthodox salts.It can also be genetically manipulated by conjugation and transduction.

Chlamydomonas reinhardtii.

This is a single celled species of green algae. It is a eukaryotic, photosynthetic organism. It is easily transformable, either by: electroporation; the bacterium Agrobacterium tumorfaciens; glass beads; or by the use of a biolistic particle delivery system (gene gun).

Physcomitrella patens.

This is a multicellular species of moss. It is a eukaryotic, photosynthetic organism.