Team:Cambridge/Project

From 2011.igem.org

(Difference between revisions)
(Bactiridescence - Reflectin' the Future)
(Achievements)
 
(151 intermediate revisions not shown)
Line 1: Line 1:
{{Template:Team:Cambridge/CAM_2011_TEMPLATE_HEAD}}
{{Template:Team:Cambridge/CAM_2011_TEMPLATE_HEAD}}
 +
Bact<b>iridescence</b> was based around the properties of [[Team:Cambridge/Project/Background | reflectin]], a squid protein with the highest refractive index of any known proteinaceous substance. In squid this protein forms complex platelets which act as [http://en.wikipedia.org/wiki/Bragg_reflector Bragg reflectors] to provide camouflage.
-
{|align="justify"
+
===Project Goals===
-
|You can write a background of your team here.  Give us a background of your team, the members, etc.  Or tell us more about something of your choosing.
+
-
|[[Image:Cambridge_logo.png|200px|right|frame]]
+
-
|-
+
-
|
+
-
''Tell us more about your project.  Give us background.  Use this is the abstract of your project.  Be descriptive but concise (1-2 paragraphs)''
+
-
|[[Image:Cambridge_team.png|right|frame|Your team picture]]
+
-
|-
+
-
|
+
-
|align="center"|[[Team:Cambridge | Team Example]]
+
-
|}
+
 +
We aimed to [[Team:Cambridge/Project/In_Vivo | express reflectin in ''E. coli'']] and to investigate its optical properties in order to build the groundwork for the manipulation of living structural colour. We also looked at the [[Team:Cambridge/Project/In_Vitro | over-expression of reflectin in ''E. coli'']], in order to obtain relatively pure samples of the protein for making thin films.
 +
Much of our work (particularly the in vivo work) simply hadn't been tried before, so, while we had high hopes, we could not be sure as to what would happen.
-
==Bactiridescence - Reflectin' the Future==
+
==Achievements==
 +
In one short summer the [[Team:Cambridge/Team | 2011 Cambridge team]] has produced a set of [[Team:Cambridge/Parts | BioBrick parts]] to allow future researchers to explore synthetic biology applications for structural colour.
-
Reflectins are a recently identified protein family rich in aromatic and sulphur-containing amino acids, responsible for the 'reflective' camouflage exhibited by certain cephalopods. To date, researchers have isolated the protein, over-expressed it in ''Escherichia coli'' and shown it to exhibit self-assembling behaviour and a changeable morphology which leads to dynamic manipulation of incident light.
+
===[[Team:Cambridge/Project/In_Vivo | In Vivo]]===
 +
Working with living cells we have;
 +
*[[Team:Cambridge/Project/Microscopy | Imaged squid tissue using novel techniques]] to explore the in vivo properties of reflectins.
 +
*Succesfully produced reflectins in ''E. coli''.
 +
*Characterised best practices for in vivo reflectin production.
 +
===[[Team:Cambridge/Project/In_Vitro | In Vitro]]===
 +
[[File:Cam_Multilayer_drop_1.jpg | right | thumb | 150px | A multilayer thin film]]
 +
By engineering ''E. coli'' to overexpress reflectins we have;
 +
*[[Team:Cambridge/Experiments/Protein_Purification | Purified reflectin]] and documented best practice for high purity yields.
 +
*Made [[Team:Cambridge/Project/Microscopy#Reflectin_Thin_Films | thin films]] which show structural colours.
 +
*Demonstrated the rapid colour changes possible with reflectin.
 +
**Videos of our thin films are available on [http://www.youtube.com/user/cambridgeigem2011 youtube].
-
Under in-vitro conditions ''Kramer et. al'' produced thin films, photonic gratings and fibres which exhibited  structural colour extending across the entire visual spectrum by varying the thickness. In particular the colour change was demonstrated to be reversible. It is hypothesized the colouration is a result of thin film interference.
+
===[[Team:Cambridge/Project/Gibthon | Software]]===
 +
[[File:Gibthon2.0beta.png | left | thumb | 100px | The Gibthon logo]]
 +
We contributed to [http://www.gibthon.org/ Gibthon], an open-source collection of web-based tools for construct design, fully compatible with both BioBrick standards and newer assembly techniques.
 +
*Greatly improved import and display of fragments (including support for [http://partsregistry.org/Main_Page partsregistry.org]).
 +
*Added tools to allow management of uploaded parts.
 +
<html><div style='clear:both'></div></html>
-
Within the Atlantic squid ''Loligo pealeii'', ''Morse et.al'' found a multi-layer alternating structure of iridophore platelets of reflectin and an unidentified material, each possessing different refractive indices. By studying tissue samples in-vitro the researchers observed conformational changes in the multi-layer structure due to phosphorylation. 
+
==[[Team:Cambridge/Project/Future | Future work]]==
-
 
+
By creating the first BioBrick parts for production of structural colour, we hope to facilitate further research. Although time did not allow us to explore the full potential of our project, we have some ideas for what could be done next.
-
As part of our iGEM project we propose to express reflectin in-vivo within ''Escherichia coli'' to reproduce the same multi-layer structure. Further we wish to demonstrate the ability to dynamically tune structural colour in-vivo through phosphorylation. Our work will directly impact upon the design of next-generation novel biosensors.
+
-
 
+
-
== Project Details==
+
-
 
+
-
 
+
-
 
+
-
 
+
-
 
+
-
=== Part 2 ===
+
-
 
+
-
 
+
-
 
+
-
 
+
-
 
+
-
=== The Experiments ===
+
-
 
+
-
 
+
-
 
+
-
 
+
-
=== Part 3 ===
+
-
 
+
-
 
+
-
 
+
-
 
+
-
== Results ==
+
{{Template:Team:Cambridge/CAM_2011_TEMPLATE_FOOT}}
{{Template:Team:Cambridge/CAM_2011_TEMPLATE_FOOT}}

Latest revision as of 02:52, 22 September 2011

Loading...
OVERVIEW
home
Bactiridescence was based around the properties of reflectin, a squid protein with the highest refractive index of any known proteinaceous substance. In squid this protein forms complex platelets which act as [http://en.wikipedia.org/wiki/Bragg_reflector Bragg reflectors] to provide camouflage.

Contents

Project Goals

We aimed to express reflectin in E. coli and to investigate its optical properties in order to build the groundwork for the manipulation of living structural colour. We also looked at the over-expression of reflectin in E. coli, in order to obtain relatively pure samples of the protein for making thin films.

Much of our work (particularly the in vivo work) simply hadn't been tried before, so, while we had high hopes, we could not be sure as to what would happen.

Achievements

In one short summer the 2011 Cambridge team has produced a set of BioBrick parts to allow future researchers to explore synthetic biology applications for structural colour.

In Vivo

Working with living cells we have;

In Vitro

A multilayer thin film

By engineering E. coli to overexpress reflectins we have;

  • Purified reflectin and documented best practice for high purity yields.
  • Made thin films which show structural colours.
  • Demonstrated the rapid colour changes possible with reflectin.
    • Videos of our thin films are available on [http://www.youtube.com/user/cambridgeigem2011 youtube].

Software

The Gibthon logo

We contributed to [http://www.gibthon.org/ Gibthon], an open-source collection of web-based tools for construct design, fully compatible with both BioBrick standards and newer assembly techniques.

  • Greatly improved import and display of fragments (including support for [http://partsregistry.org/Main_Page partsregistry.org]).
  • Added tools to allow management of uploaded parts.

Future work

By creating the first BioBrick parts for production of structural colour, we hope to facilitate further research. Although time did not allow us to explore the full potential of our project, we have some ideas for what could be done next.