Team:Cambridge

From 2011.igem.org

(Difference between revisions)
 
(29 intermediate revisions not shown)
Line 1: Line 1:
{{Template:Team:Cambridge/CAM_2011_TEMPLATE_HEAD}}
{{Template:Team:Cambridge/CAM_2011_TEMPLATE_HEAD}}
-
'''''Newsflash: Calling all iGEM alumni! Please spare 5 minutes of your time to [[Team:Cambridge/Questionnaire | Share your iGEM experience!]], and help us find out what the long term impact of iGEM is on both its participants and the field of synthetic biology as a whole.'''''
+
<html>
 +
<div id='wiki_content'>
 +
  <style type='text/css'>
 +
  .cam-home-row {margin-bottom: 15px;}
 +
  .cam-home-box {width:358px;height:200px;border: 1px solid lightgrey;text-align: center;opacity:.9;filter:alpha(opacity=90);}
 +
  .cam-home-box:hover {opacity:1;}
 +
  .cam-home-box-content{font-style: italic;font-size:14px;margin:5px;}
 +
 
 +
  .cam-home-box.cam-home-left{float:left;}
 +
  .cam-home-box.cam-home-right{float:right;}
-
Nature’s colours don’t just come from pigments, but from structure too. Cephalopods camouflage themselves using intracellular, iridescent structures made of proteins called reflectins. These are the only known proteinaceous materials that use thin film interference to generate colour. They are inspiring a new class of responsive optical materials.
+
/*Background*/
 +
  .cam-home-box:hover {background: url("/wiki/images/c/c9/CAM_Bactiridescence_White_85.png") repeat scroll 0 0 transparent}
 +
/*Borders*/
 +
  .cam-home-box.cam-home-abstract:hover {border-color: #4fb84e;}
 +
  .cam-home-box.cam-home-colour:hover {border-color: #ee2424;}
 +
  .cam-home-box.cam-home-survey:hover {border-color: #3953a4;}
 +
  .cam-home-box.cam-home-tools:hover {border-color: #eea900;}
-
We hope to demonstrate the potential of reflectins as photonic materials by producing optical devices which exhibit instantaneous colour change. In addition we intend to characterise export pathways in E. coli and optimise protein production for commercial viability. We will submit constructs for the expression of reflectins in a variety of organisms.
+
/*Title*/
 +
  .cam-home-box.cam-home-abstract:hover .cam-home-box-title {color: #4fb84e;}
 +
  .cam-home-box.cam-home-colour:hover .cam-home-box-title {color: #ee2424;}
 +
  .cam-home-box.cam-home-survey:hover .cam-home-box-title {color: #3953a4;}
 +
  .cam-home-box.cam-home-tools:hover .cam-home-box-title {color: #eea900;}
-
Our team is producing a report examining the impact of iGEM, focusing on innovation in the biotechnology industry. Alongside this we are contributing to Gibthon, a collection of software tools aimed at fragment library management and construct design, building on standards developed by previous Cambridge teams.
+
  .cam-home-box-title {height:20px; color: #000000;margin-bottom:5px;}
 +
  .cam-home-box-title p {font-size: 18px; font-weight: bold; margin:1px;}
-
Don't forget to follow us on [http://twitter.com/#!/Cam_iGEM_2011 Twitter], and if you would like to sponsor Team Bactiridescence please take a look at our [https://static.igem.org/mediawiki/2011/c/cb/IGEM_brochure_Cambridge_Team_2011_small_version.pdf brochure].
+
  .cam-home-photos {height:140px; background-image: url(/wiki/images/3/37/CAM_black_85.png); padding:5px;}
 +
  .cam-home-photo {float:left;}
 +
  .cam-home-photo a {opacity: 1.0 !important;filter:alpha(opacity=100)!important;}
 +
  .cam-home-photo img {opacity: 0.9; filter:alpha(opacity=90);}
 +
  .cam-home-photo:hover img {opacity: 1.0; filter:alpha(opacity=100);}
 +
  #cam_home_sponsors {width:600px;margin-left:auto;margin-right:auto;}
 +
  .cam-sponsor-logo {width:180px;height:180px;margin:10px;float:left;background-image:url(/wiki/images/e/e4/CAM_SPONSOR_LOGOS.png);opacity:.7!important;filter:alpha(opacity=70)!important;}
 +
  .cam-sponsor-logo:hover {opacity:1!important;filter:alpha(opacity=100)!important;}
 +
 
 +
  .cam-logo-1 {background-position: 0 0;}
 +
  .cam-logo-2 {background-position: -180px 0;}
 +
  .cam-logo-3 {background-position: -360px 0;}
 +
  .cam-logo-4 {background-position: 0 -180px;}
 +
  .cam-logo-5 {background-position: -180px -180px;}
 +
  .cam-logo-6 {background-position: -360px -180px;}
 +
  </style>
-
==''Bact'''iridescence''''' - An Overview==
+
<div class='cam-home-row'>
 +
  <a href='/Team:Cambridge/Project' class='cam-color-exempt'>
 +
  <div class='cam-home-box cam-home-left cam-home-abstract'>
 +
      <div class='cam-home-box-title'>
 +
        <p>Abstract</p>
 +
      </div>
 +
    <div class='cam-home-box-content'>
 +
      <p>We investigated the properties of a novel yet under-researched group of proteins called reflectins.</p>
 +
      <p>Reflectins are interesting and unusual because of their self-organising properties, which cause them to produce dynamic structural colour.</p>
 +
      <p>We expressed codon-optimised reflectin in E. coli, and investigated the proteins' in vivo and in vitro effects.</p>
 +
    </div>
 +
  </div>
 +
  </a>
-
[[File:Iridescent cells from squid eye.jpg | 400px | thumb | right | Iridescence in cells from the eye of squid ''Loligo vulgaris'' ]]
+
  <a href='/Team:Cambridge/Project/Background' class='cam-color-exempt'>
 +
  <div class='cam-home-box cam-home-right cam-home-colour'>
 +
      <div class='cam-home-box-title'>
 +
        <p>Structural Colour</p>
 +
      </div>
 +
    <div class='cam-home-box-content'>
 +
      <p>Nature’s colours don’t just come from pigments, but from structure too.</p>
 +
      <p>Cephalopods camouflage themselves using intracellular structures made from reflectins.</p>
 +
      <p>These are the only known proteinaceous structures to exhibit structural colour. They are inspiring a new class of responsive optical materials.</p>
 +
    </div>
 +
  </div>
 +
  </a>
-
We have two principle branches to our main project: ''in vivo'' studies, in which we will be investigating the properties of reflectin protein in live bacteria, and ''in vitro'' studies, in which we will be investigating the properties of reflectin protein that has been extracted from E. coli.
+
  <div style='clear:both;'></div>
 +
</div>
-
''In vivo'', we believe that we will be able to engineer the reflectin gene such that it can be expressed in E. coli in a ‘properly folded’ state, something that has never been achieved before. We will then attempt to bind the protein to form an iridescent coating over the surface of the bacteria, creating what we term ‘bactiridescence’. If we could then control the colour changing behaviour of the reflectin, this could be a game-changing step for the future of biosensors.
 
-
''In vitro'', we are confident that we can use the protein to make thin films with interesting optical behaviour (including colour change when someone breathes on it!) as well as diffraction gratings, which are virtually defect-free. There has already been an account of similar experiments in previous research, but we will be looking to extend it substantially. For example, we would like to create multi-layered thin films, which more accurately imitate the ‘natural’ arrangement of reflection in squid tissue, and chemically induce colour changes, in ways that haven’t previously been attempted. These advances are necessary if reflectin is ever to be used in a commercial application.
+
<div class='cam-home-photos cam-home-row'>
 +
  <div class='cam-home-photo' style='margin-right:6px;'>
 +
    <a href='/Team:Cambridge/Project/In_Vitro'>
 +
      <img src='/wiki/images/6/60/CAM_home_image1.jpg' width='238px' height='140px' alt='Image 1' title='In-Vitro Thin Films of Reflectin'></img>
 +
    </a>
 +
  </div>
 +
  <div class='cam-home-photo' style='margin-right:6px;'>
 +
    <a href='/Team:Cambridge/Team'>
 +
      <img src='/wiki/images/3/37/CAM_home_image2.jpg' width='238px' height='140px' alt='Image 2' title='The Team'></img>
 +
    </a>
 +
  </div>
 +
  <div class='cam-home-photo'>
 +
    <a href='/Team:Cambridge/Project/Microscopy'>
 +
      <img src='/wiki/images/b/b1/CAM_home_image3.jpg' width='238px' height='140px' alt='Image 3' title='Microscopy'></img>
 +
    </a>
 +
  </div>
 +
  <div style='clear:both;'></div>
 +
</div>
-
In addition, we are keen to expand the field of synthetic biology by making improved software tools. Our new open-source web-based software tool, PyGen, will be used for sequence manipulation and display, also integrating related applications already available on the web (including Gibthon, created by Cambridge iGEM 2010). It is specifically designed to improve on areas in which current researchers find fault with current software; we are conducting extensive research among the international iGEM  community to ensure that it is consumer oriented. The open-source philosophy is deeply ingrained in the spirit of iGEM as well.
 
-
You can see our first pictures of reflectin thin films [[Team:Cambridge/Photos | here]]
+
<div class='cam-home-row'>
 +
  <a href='/Team:Cambridge/Society' class='cam-color-exempt'>
 +
    <div class='cam-home-box cam-home-left cam-home-survey'>
 +
      <div class='cam-home-box-title'>
 +
        <p>Impact of iGEM</p>
 +
      </div>
 +
      <div class='cam-home-box-content'>
 +
        <p>We wanted to know what effect the iGEM competition has had on its past contestants.</p>
 +
        <p>We were also interested in what past participants thought of iGEM and how it shaped their view of synthetic biology.</p>
 +
        <p>We got in touch with a number of iGEM alumni and asked them to share their experience.</p>
 +
      </div>
 +
    </div>
 +
  </a>
 +
 
 +
  <a href='/Team:Cambridge/Project/Gibthon' class='cam-color-exempt'>
 +
    <div class='cam-home-box cam-home-right cam-home-tools'>
 +
      <div class='cam-home-box-title'>
 +
        <p>Tools</p>
 +
      </div>
 +
      <div class='cam-home-box-content'>
 +
        <p>We used Gibson Assembly exclusively to build our constructs during the competition. This allowed us to do multi-part assemblies faster and with fewer bugs than if we had used standard techniques.</p>
 +
        <p>We contributed to a collection of software tools called <i>Gibthon</i> (initiated by Cambridge iGEM 2010), which aids the design of primers for Gibson assembly.</p>
 +
      </div>
 +
    </div>
 +
  </a>
 +
  <div style='clear:both;'></div>
 +
  </div>
 +
 
 +
  <div id='cam_home_sponsors'>
 +
    <a href='http://www.cambio.co.uk/' class='cam-sponsor-logo cam-logo-1'></a>
 +
    <a href='http://www.anachem.co.uk/' class='cam-sponsor-logo cam-logo-2'></a>
 +
    <a href='http://www.fisher.co.uk/' class='cam-sponsor-logo cam-logo-3'></a>
 +
    <a href='http://www.clontech.com/' class='cam-sponsor-logo cam-logo-4'></a>
 +
    <a href='http://www.geneflow.co.uk/' class='cam-sponsor-logo cam-logo-5'></a>
 +
    <a href='http://www.promega.com/' class='cam-sponsor-logo cam-logo-6'></a>
 +
  </div>
 +
 
 +
</div>
 +
</html>
{{Template:Team:Cambridge/CAM_2011_TEMPLATE_FOOT}}
{{Template:Team:Cambridge/CAM_2011_TEMPLATE_FOOT}}

Latest revision as of 01:20, 22 September 2011

Loading...
OVERVIEW
home