Team:Brown-Stanford/PowerCell/Cyanobacteria

From 2011.igem.org

(Difference between revisions)
(Created page with "{{:Team:Brown-Stanford/Templates/Main}} == '''Introduction''' == Mars is a hostile, desolate environment. In order to live there, humans will have to deal with extreme cold, u...")
(Introduction)
Line 1: Line 1:
{{:Team:Brown-Stanford/Templates/Main}}
{{:Team:Brown-Stanford/Templates/Main}}
-
== '''Introduction''' ==
+
== '''Cyanobacteria''' ==
-
 
+
-
Mars is a hostile, desolate environment.  In order to live there, humans will have to deal with extreme cold, unfiltered solar radiation, low oxygen, and little water{{:Team:Brown-Stanford/Templates/FootnoteNumber|1}}.  Cellular engineering will solve these problems in time, but that raises a new problem--the extra burden of providing these requirements raises the already considerable needs of these microbes{{:Team:Brown-Stanford/Templates/FootnoteNumber|2}}.  It may be possible to feed them from a stored cache of growth nutrients for some time, but these basic requirements will have to be extracted from local resources if a self-sustaining colony is to exist.
+
-
 
+
-
PowerCell is our solution to this problem; by engineering cyanobacteria to excrete sugar compounds photosynthesized from atmospheric carbon dioxide{{:Team:Brown-Stanford/Templates/FootnoteNumber|3}}, PowerCell will provide other bacterial cultures with a rich carbon source, a basic requirement for producing biomass and other compounds.  In addition, PowerCell able to fix atmospheric N2 and release it in a form accessible to bacteria, providing a basic requirement for protein synthesis and other crucial biological functions{{:Team:Brown-Stanford/Templates/FootnoteNumber|4}}. 
+
-
+
-
By producing two of the macromolecules essential to bacterial growth, PowerCell will form a metabolic foundation for the biological systems which will eventually enable a settlement on Mars.  Other microbes producing oxygen, heat, food, light, and other necessities will follow, and in time, a complete biogenic life support system will be put together, all fueled by PowerCell.
+
-
 
+
-
[[File:Brown-Stanford PowerCellEnergyFlowDiagram.jpg|700px|center]]
+
-
 
+
-
===References===
+
-
{{:Team:Brown-Stanford/Templates/Footnote|1|R. Hanel, B. Conrath, W. Hovis, V. Kunde, P. Lowman, W. Maguire, J. Pearl, J. Pirraglia, C. Prabhakara, B. Schlachman, G. Levin, P. Straat, T. Burke, Investigation of the Martian environment by infrared spectroscopy on Mariner 9, Icarus, Volume 17, Issue 2, October 1972, Pages 423-442, ISSN 0019-1035, DOI: 10.1016/0019-1035(72)90009-7. (http://www.sciencedirect.com/science/article/pii/0019103572900097)}}
+
-
 
+
-
{{:Team:Brown-Stanford/Templates/Footnote|2|Weeks, Amy M, and Michelle C Y Chang. 2011. “Constructing de novo biosynthetic pathways for chemical synthesis inside living cells.” Biochemistry 50 (24) (June 21): 5404-5418. doi:10.1021/bi200416g.}}
+
-
 
+
-
{{:Team:Brown-Stanford/Templates/Footnote|3|Niederholtmeyer, Henrike, Bernd T Wolfstädter, David F Savage, Pamela A Silver, and Jeffrey C Way. 2010. “Engineering cyanobacteria to synthesize and export hydrophilic products.” Applied and Environmental Microbiology 76 (11) (June): 3462-3466. doi:10.1128/AEM.00202-10.}}
+
-
 
+
-
{{:Team:Brown-Stanford/Templates/Footnote|4|Chaurasia, Akhilesh Kumar, and Shree Kumar Apte. 2011. “Improved eco-friendly recombinant Anabaena sp. strain PCC7120 with enhanced nitrogen biofertilizer potential.” Applied and Environmental Microbiology 77 (2) (January): 395-399. doi:10.1128/AEM.01714-10.}}
+
 +
Photosynthetic bacteria (cyanos, filamentous, nitrogen fixation); survey of existing transformation methods
{{:Team:Brown-Stanford/Templates/Foot}}
{{:Team:Brown-Stanford/Templates/Foot}}

Revision as of 19:58, 11 September 2011

Brown-Stanford
iGEM

Cyanobacteria

Photosynthetic bacteria (cyanos, filamentous, nitrogen fixation); survey of existing transformation methods