Team:ETH Zurich/Process/Validation

From 2011.igem.org

(Difference between revisions)
(Setup Validation)
(Setup Validation)
Line 56: Line 56:
==Setup Validation==
==Setup Validation==
-
To test the different PDMS channels, we engineered an arabinose-dependent sfGFP reporter plasmid.  
+
To test the different PDMS channels, we engineered an arabinose-dependent sfGFP reporter plasmid, with which ''e.coli'' BW27783 strain was transformed.  
-
[[File:ETHZ_arabinose_gradient.png|500px|center|thumb|'''Figure 3: Proof of principle, arabinose-inducible GFP gradient created in the microfluidic PDMS devise ''' ]]
+
[[File:ETHZ_arabinose_gradient.png|500px|center|thumb|'''Figure 3: Proof of principle, arabinose-inducible GFP gradient created in the microfluidic PDMS device ''' ]]
 +
 
 +
 
 +
[[File:ETH arabinose channel.jpg|500px|center|thumb|'''Figure 4:  ''' ]]
{{:Team:ETH Zurich/Templates/SectionEnd}}
{{:Team:ETH Zurich/Templates/SectionEnd}}

Revision as of 00:19, 29 October 2011

Can you feel the smoke tonight?
 

Contents

Final Setup and Validation

This page presents description of our final channel design as well as description of its construction, which we did by ourselves. Our final channel is built out of polydimethylsiloxane (PDMS) and constructed with a technique called photolithography. Finally we performed some experiments in the channel in order to validate our design.

Final Channel Design

Figure 1: Final design of our microfluidic chips containing the channels. The three chips differ in shape and dimensions


On the left is the design of our final microfluidic devices, which we made out of polydimethylsiloxane (PDMS). The three chips differ between themselves in their shape and dimensions. On the left side of the chips, each design has a reservoir attached to one end of the channels.


Dimensions of the chips:

  • The size of the first two chips is 15 x 33 mm, the size of the last one is 23 x 46 mm.
  • The width of the channels is either 0.5 or 1 mm
  • Channel length:

- Large chip: (from top to bottom) 30 mm, 15 mm and ca. 60 mm
- Small chip: all 20mm



Final Channel Construction

To construct the microfluidic channels, we used the technique photolithography. Photolithography is done by photopatterning of structures by using a mask (drawing of channels in 2D) and is based on the utilization of particular substances (photoresists) that become soluble to particular solvents after being exposed to UV light [1].

Hereafter a brief description of the photolithography technique: [2]

First, a mask for the microfluidic devices is made by printing the design on glass or quartz or simply on a regular transparency. Then, an SU-8 negative photoresist is spun onto a Si wafer until the final thickness of the photoresist is achieved. The transparency photomask is placed over the Si waver coated with photoresist and the photoresist is exposed to UV light, after which a postexposure bake is performed to crosslink selectively the exposed portions of the photoresist causing the solidification of the material. The sample is put in a beaker containing SU-8 developer to remove the unexposed SU-8. After the sample containing the exposed SU-8 only is is taken out of the baker and dried, PDMS is applied over the SU-8 mold and allowed to cure. SU-8 is removed and a glass is bounded to the PDMS. The channels are constructed. You can read more about the technique here.

Figure 2: The process of designing the microfluidic devises. Graphic taken from [2]


You can see below some photos of the channel building process:



Setup Validation

To test the different PDMS channels, we engineered an arabinose-dependent sfGFP reporter plasmid, with which e.coli BW27783 strain was transformed.

Figure 3: Proof of principle, arabinose-inducible GFP gradient created in the microfluidic PDMS device


Figure 4:


References

[1] [http://www.elveflow.com/microfluidic/16-start-with-microfluidic http://www.elveflow.com/microfluidic/16-start-with-microfluidic]

[2] [http://www.springerlink.com/content/q744ww56gvg05753/#section=91916&page=1 Microfluidic Techniques: Reviews and Protocols, Shelley D. Minteer,
Chapter 3: Fabrication of Polydimethylsiloxane Microfluidics Using SU-8 Molds, Rabih Zaouk, Benjamin Y. Park and Marc J. Madou]


Back to iGEM Our Sponsors
ETHZ-BASF.png ETH Zurich Logo.png ETHZ-Lonza.png ETHZ-Merck Serono.png
ETHZ-Novartis.png ETHZ-Roche.png ETHZ-Syngenta.png DSM MasterLogo.png