Team:ETH Zurich
From 2011.igem.org
(Difference between revisions)
(→Abstract) |
|||
Line 61: | Line 61: | ||
{{:Team:ETH Zurich/Templates/SectionStart}} | {{:Team:ETH Zurich/Templates/SectionStart}} | ||
= Abstract = | = Abstract = | ||
- | '''We create a bacterio-quantifier of smoke. SmoColi cells are engineered to sense toxic substances found in cigarette smoke. They are immobilized in a microfluidic channel, in which a concentration gradient of the toxic substance is established. The sensor is linked to a band-pass filter that leads to input-concentration-dependent GFP expression. Continuous increase of the input concentration and its detection, therefore, establishes a moving fluorescent band in the channel. Finally, if the input concentration exceeds a certain threshold, cells produce RFP and the device turns red.''' | + | '''We create a bacterio-quantifier of smoke. SmoColi cells are engineered to sense toxic substances found in cigarette smoke. They are immobilized in a microfluidic channel, in which a concentration gradient of the toxic substance is established. The sensor is linked to a band-pass filter that leads to input-concentration-dependent GFP expression. Continuous increase of the input concentration and its detection, therefore, establishes a moving fluorescent band in the channel. Finally, if the input concentration exceeds a certain threshold, cells produce RFP and the device turns red. Due to its modularity, our SmoColi system can be used in fact as a quantifier for a range of substances, as long as the sensor is adapted.''' |
{{:Team:ETH Zurich/Templates/SectionEnd}} | {{:Team:ETH Zurich/Templates/SectionEnd}} | ||
{{:Team:ETH Zurich/Templates/HeaderNewEnd}} | {{:Team:ETH Zurich/Templates/HeaderNewEnd}} |
Revision as of 18:05, 27 October 2011
Abstract
We create a bacterio-quantifier of smoke. SmoColi cells are engineered to sense toxic substances found in cigarette smoke. They are immobilized in a microfluidic channel, in which a concentration gradient of the toxic substance is established. The sensor is linked to a band-pass filter that leads to input-concentration-dependent GFP expression. Continuous increase of the input concentration and its detection, therefore, establishes a moving fluorescent band in the channel. Finally, if the input concentration exceeds a certain threshold, cells produce RFP and the device turns red. Due to its modularity, our SmoColi system can be used in fact as a quantifier for a range of substances, as long as the sensor is adapted.