Team:ETH Zurich/Process/Validation
From 2011.igem.org
(→Analysis) |
(→Analysis) |
||
Line 28: | Line 28: | ||
| | | | ||
== Analysis == | == Analysis == | ||
- | We quantified the fluorescence signal using a moving average of 80×80 pixel, which moved along the symmetry axis of the tube (see Figure 3). | + | We quantified the fluorescence signal using a moving average of 80×80 pixel, which moved along the symmetry axis of the tube (see Figure 3), in red you can see the according reaction diffusion model. |
[[File:Quantification.png|600px|center|thumb|'''Figure 3: Quantification of the gradient''' in Figure 2: The light intensity of the IPTG-induced GFP signal was quantified by a 80×80 pixel moving average. The peak at around 1.2cm is due to an air bubble in the channel (see Figure 2).]] | [[File:Quantification.png|600px|center|thumb|'''Figure 3: Quantification of the gradient''' in Figure 2: The light intensity of the IPTG-induced GFP signal was quantified by a 80×80 pixel moving average. The peak at around 1.2cm is due to an air bubble in the channel (see Figure 2).]] |
Revision as of 09:40, 12 October 2011
Evaluation |
| |||
This page presents a biological experiment which showed that the setup of the flow channel works as predicted by the models (compare plots in the modeling section). |
Experimental SetupTo validate that we can create a gradient of a small molecule along our agarose filled tube, we filled a tube (2 mm diameter, 7 cm long) with agarose and E. coli (see Figure 1). The E. coli cells were engineered to express an IPTG-inducible GFP. The cells were incubated at 37 °C overnight. One end of the tube was connected to a sample medium (1 ml) containing 10 mM IPTG solution. |
ResultsFluorescence pictures of the tube (see Figure 2) showed a clear gradient of the fluorescence signal over approximately 5cm of the tube. After 5cm, the signal strength dropped under the background noise. |
AnalysisWe quantified the fluorescence signal using a moving average of 80×80 pixel, which moved along the symmetry axis of the tube (see Figure 3), in red you can see the according reaction diffusion model. The fluorescence distribution of this experiment has a similar shape as the distributions predicted by the model (see modeling section). The difference in the experimental results compared to the simulations can be explained mainly due to the different diffusing molecules: the simulations were obtained for acetaldehyde, whereas the experiments were carried out with IPTG. We expect the different values of the diffusion as well as of the degradation constants of the two molecules to be the main reason for the differences. |