Team:Bielefeld-Germany/Project/Background/S-Layer
From 2011.igem.org
(→S-layer) |
(→S-layers in general) |
||
Line 4: | Line 4: | ||
=S-layer= | =S-layer= | ||
==S-layers in general== | ==S-layers in general== | ||
- | Molecular nanotechnology, especially nanobiotechnology starts to use and modify functionalize surfaces. Especially the immobilization of self-assembling biomolecules draws an increasing attention. The advantages of using immobilized enzymes in well-defined positions on nano-structured surfaces may even be greater. Self-assembly is an organization of molecules into defined structures, lowering the free energy of the system. Interaction between the molecules is non-covalent (e.g. hydrophobic-hydrophobic, van der Waals forces, molecular stacking) ([http://onlinelibrary.wiley.com/doi/10.1002/smll.200700200/abstract Schäffer ''et al.'', 2007]) | + | Molecular nanotechnology, especially nanobiotechnology starts to use and modify functionalize surfaces. Especially the immobilization of self-assembling biomolecules draws an increasing attention. The advantages of using immobilized enzymes in well-defined positions on nano-structured surfaces may even be greater. Self-assembly is an organization of molecules into defined structures, lowering the free energy of the system. Interaction between the molecules is non-covalent (''e.g.'' hydrophobic-hydrophobic, van der Waals forces, molecular stacking) ([http://onlinelibrary.wiley.com/doi/10.1002/smll.200700200/abstract Schäffer ''et al.'', 2007]). |
+ | |||
+ | |||
+ | Many biomolecules such as protein, polysaccharides and lipid have the ability to self-assemble into different shapes (''e.g.'' spherical, rod- or sheet-like shapes), allowing several specific functions as virus capsids, cytoskeleton components or extracellular surface layer protein. | ||
+ | The so-called paracrystalline cell surface-layers (S-layers) are build up on S-layer proteins and are one of the most common surface structures in Bacteria and Archaea. They are regarded as the outmost cell envelope of prokaryotic organisms ([http://onlinelibrary.wiley.com/doi/10.1111/j.1574-6968.2006.00573.x/full Sleytr ''et al.'', 2007]). |
Revision as of 13:58, 20 September 2011
S-layer
S-layers in general
Molecular nanotechnology, especially nanobiotechnology starts to use and modify functionalize surfaces. Especially the immobilization of self-assembling biomolecules draws an increasing attention. The advantages of using immobilized enzymes in well-defined positions on nano-structured surfaces may even be greater. Self-assembly is an organization of molecules into defined structures, lowering the free energy of the system. Interaction between the molecules is non-covalent (e.g. hydrophobic-hydrophobic, van der Waals forces, molecular stacking) ([http://onlinelibrary.wiley.com/doi/10.1002/smll.200700200/abstract Schäffer et al., 2007]).
Many biomolecules such as protein, polysaccharides and lipid have the ability to self-assemble into different shapes (e.g. spherical, rod- or sheet-like shapes), allowing several specific functions as virus capsids, cytoskeleton components or extracellular surface layer protein.
The so-called paracrystalline cell surface-layers (S-layers) are build up on S-layer proteins and are one of the most common surface structures in Bacteria and Archaea. They are regarded as the outmost cell envelope of prokaryotic organisms ([http://onlinelibrary.wiley.com/doi/10.1111/j.1574-6968.2006.00573.x/full Sleytr et al., 2007]).