Team:UNIPV-Pavia

From 2011.igem.org

(Difference between revisions)
 
(53 intermediate revisions not shown)
Line 1: Line 1:
{{main}}
{{main}}
<html>
<html>
-
<h2 class="art-postheader">
+
 
-
Ctrl+<em>E</em>.
+
<table align='center' width='100%'>
-
</h2>
+
<tr>
 +
<td>
 +
<div style='text-align:center'><div class="thumbinner" style="width:100%;">
 +
<img alt="" src="https://static.igem.org/mediawiki/2011/b/b1/UNIPV_Pavia_Work_in_progress_scribblings.jpg" class="thumbimage"  width="93%"></a></div></div>
 +
</td>
 +
</tr>
 +
</table>
 +
<br>
 +
<h2 class="art-postheader">The project</h2>
<div class="cleared"></div>
<div class="cleared"></div>
<div class="art-postcontent">
<div class="art-postcontent">
-
<p style="text-align:left;">
+
<p align='justify'>Our work aims at implementing the engineering concept of closed-loop control in <em>E. coli</em>, exploiting quorum sensing. As a proof of concept, we designed a simple genetic controller that regulates the concentration of 3OC6-HSL signalling molecule around  a user-defined set-point. The controlled variable (3OC6-HSL) increases as a function of the exogenous anhydroTetracycline input, that triggers LuxI expression. The controller senses the 3OC6-HSL concentration and activates the production of AiiA, that degrades it.
 +
To observe the desired behaviour, a fine tuning of the system was necessary.  The transcriptional/translational strength of the regulatory elements (promoter+RBS in several combinations) and the enzyme activities were measured and exploited to identify a mathematical model able to predict the behaviour of the controlled system. These predictions made possible an in silico rational fine tuning of the circuit: the most promising modules were selected and assembled into the final circuit, avoiding a cost and time expensive combinatorial approach.
 +
</p>
 +
<br>
-
<img width="350" height="220" alt="" src="https://static.igem.org/mediawiki/2011/1/19/Unipv11_mainimage.jpg" style="float:left;" /></p>
 
-
<p style="text-align:justify;">
 
-
One of the pivotal objectives of synthetic biology is to build complex gene networks with a predictable behavior by combining well-characterized basic modules. As a proof of concept of this fundamental, our project aims at designing and implementing in <em>E. coli</em> a quorum sensing-based control system, able to regulate the concentration of a signaling molecule (3OC<small><sub>6</sub></small>-HSL) via a negative feedback loop.
 
-
In order to obtain the desired output, fine-tuning of the circuit is necessary; therefore, a mathematical model of the control system will be derived and identified by data coming from ad hoc experiments performed on basic modules. Model simulations will be used to meet the design specifications of the biological controller, demonstrating that full characterization of basic parts is a major goal to predict the behavior of more complex circuits.
 
-
</p>
+
<link rel="stylesheet" href="https://2011.igem.org/Team:UNIPV-Pavia/Templates/nivo_default_css?action=raw&ctype=text/css" type="text/css"/>
 +
<link rel="stylesheet" href="https://2011.igem.org/Team:UNIPV-Pavia/Templates/nivo_css?action=raw&ctype=text/css" type="text/css"/>
 +
<script type="text/javascript" src="https://2011.igem.org/Team:UNIPV-Pavia/Templates/jquery_js?action=raw&ctype=text/javascript"></script>
 +
<script type="text/javascript" src="https://2011.igem.org/Team:UNIPV-Pavia/Templates/nivo_slider_pack?action=raw&ctype=text/javascript"></script>
 +
<script type="text/javascript">
 +
    $(window).load(function() {
 +
        $('#slider').nivoSlider({
 +
effect:'fade',
 +
pauseOnHover:true
 +
});
 +
    });
 +
</script>
 +
 
 +
 
 +
 
 +
 
 +
<div style="width:550px;margin:10px auto;">
 +
<div class="slider-wrapper theme-default">
 +
<div class="ribbon"></div>
 +
 
 +
<div id="nivoslider-125" class="nivoSlider" style="width:550px;height:366px;">
 +
 
 +
<img src="https://static.igem.org/mediawiki/2011/2/2d/UNIPV_Hometeam1.jpg" title="UNIPV iGEM team" alt="" />
 +
<img src="https://static.igem.org/mediawiki/2011/0/0a/UNIPV_Hometeam2.jpg" title="UNIPV iGEM team" alt="" />
 +
<img src="https://static.igem.org/mediawiki/2011/e/e1/UNIPV_Hometeam3.jpg" title="UNIPV iGEM team" alt="" />
 +
<img src="https://static.igem.org/mediawiki/2011/f/f2/UNIPV_Hometeam4.jpg" title="Work in progress" alt="" />
 +
<img src="https://static.igem.org/mediawiki/2011/9/9b/UNIPV_Home1.jpg" title="Pavia and the river Ticino" alt="" />
 +
<img src="https://static.igem.org/mediawiki/2011/a/a2/UNIPV_Home2.jpg" title="University of Pavia" alt="" />
 +
<img src="https://static.igem.org/mediawiki/2011/f/f7/UNIPV_Home3.jpg" title="Faculty of Engineering" alt="" />
 +
<img src="https://static.igem.org/mediawiki/2011/f/f0/UNIPV_Home4.jpg" title="Scientific campus" alt="" />
 +
 
 +
</div>
 +
</div>
 +
<div id="nivoslider-125-caption-0" class="nivo-html-caption">You can add captions too&#8230;</div>
 +
<p><script type="text/javascript">
 +
jQuery(window).load(function(){
 +
    jQuery("#nivoslider-125").nivoSlider({
 +
        effect:"random",
 +
        slices:15,
 +
        boxCols:8,
 +
        boxRows:4,
 +
        animSpeed:500,
 +
        pauseTime:3000,
 +
        startSlide:0,
 +
        directionNav:true,
 +
        directionNavHide:true,
 +
        controlNav:true,
 +
        controlNavThumbs:false,
 +
        controlNavThumbsFromRel:true,
 +
        keyboardNav:true,
 +
        pauseOnHover:true,
 +
        manualAdvance:false
 +
    });
 +
});
 +
</script>
 +
</div>
 +
 
 +
<br><br>
 +
 
 +
 
 +
 
</html>
</html>
{{end}}
{{end}}

Latest revision as of 13:14, 19 September 2011

UNIPV TEAM 2011


The project

Our work aims at implementing the engineering concept of closed-loop control in E. coli, exploiting quorum sensing. As a proof of concept, we designed a simple genetic controller that regulates the concentration of 3OC6-HSL signalling molecule around a user-defined set-point. The controlled variable (3OC6-HSL) increases as a function of the exogenous anhydroTetracycline input, that triggers LuxI expression. The controller senses the 3OC6-HSL concentration and activates the production of AiiA, that degrades it. To observe the desired behaviour, a fine tuning of the system was necessary. The transcriptional/translational strength of the regulatory elements (promoter+RBS in several combinations) and the enzyme activities were measured and exploited to identify a mathematical model able to predict the behaviour of the controlled system. These predictions made possible an in silico rational fine tuning of the circuit: the most promising modules were selected and assembled into the final circuit, avoiding a cost and time expensive combinatorial approach.


You can add captions too…



Retrieved from "http://2011.igem.org/Team:UNIPV-Pavia"