Team:Edinburgh/Phage Replication

From 2011.igem.org

(Difference between revisions)
(References)
 
(9 intermediate revisions not shown)
Line 17: Line 17:
*During assembly, viral DNA is extruded through the membrane and enveloped by coat proteins.  
*During assembly, viral DNA is extruded through the membrane and enveloped by coat proteins.  
*The ends of the assembled virus are capped by four minor coat proteins, and the length of the filament is covered by several thousand copies of the major coat protein <span class="hardword" id="p8">pVIII</span>.
*The ends of the assembled virus are capped by four minor coat proteins, and the length of the filament is covered by several thousand copies of the major coat protein <span class="hardword" id="p8">pVIII</span>.
-
 
-
[[File:Sfmb2e_eTopic_1101_4.jpg|center|thumb|700px|caption|From Slonczewski and Foster (2010).]]
 
-
 
*The M13 phage attacks ''E. coli'' (host), multiplies in the host cell cytoplasm, and is released without causing the bacteria's death (non-lytic).
*The M13 phage attacks ''E. coli'' (host), multiplies in the host cell cytoplasm, and is released without causing the bacteria's death (non-lytic).
Line 34: Line 31:
*'''dx/dt=a*k1*x-b*v*x '''  
*'''dx/dt=a*k1*x-b*v*x '''  
      
      
-
:Rate of change of quantity of uninfected ''E. coli'' equals to the uninfected ''E. coli'' replicate itself minus the ''E. coli'' infected by M13 phage.
+
: The rate of change in the number of uninfected ''E. coli'' equals the rate at which they replicate, minus the rate at which they become infected by phage.
*'''dy/dt=a*k2*y+b*v*x '''  
*'''dy/dt=a*k2*y+b*v*x '''  
      
      
-
:Rate of change of quantity of infected ''E. coli'' equals to the quantity of infected ''E. coli'' replicate itself plus the ''E. coli'' infected by M13 phage.
+
: The rate of change in the number of infected ''E. coli'' equals the rate at which they replicate, plus the rate at which uninfected ''E. coli'' become infected by phage.
*'''dv/dt=c*y-b*v*x-m*v '''
*'''dv/dt=c*y-b*v*x-m*v '''
    
    
-
:Rate of change of quantity of free phage equals to the phage released by infected ''E. coli'' minus the phage which is to infect an ''E. coli'' and the decayed phage.
+
: The rate of change in the number of free phage equals the rate at which phage are released by infected ''E. coli'', minus the rate at which phage infect ''E. coli'', and also minus the rate at which phage decay.
: X(t) &mdash; uninfected ''E. coli''
: X(t) &mdash; uninfected ''E. coli''
Line 56: Line 53:
The [[:File:Matlab_code_phagerep.txt | MATLAB code]] uses a <span class="hardword" id="rk">Runge-Kutta method</span> of order four to solve the system.
The [[:File:Matlab_code_phagerep.txt | MATLAB code]] uses a <span class="hardword" id="rk">Runge-Kutta method</span> of order four to solve the system.
 +
 +
We tried modelling a number of different starting conditions.
[[File:Phage dyn.jpg|center|thumb|700px|caption|Figure1  simulation value: x0=2.00E3 y0=v0=2.00E5]]
[[File:Phage dyn.jpg|center|thumb|700px|caption|Figure1  simulation value: x0=2.00E3 y0=v0=2.00E5]]
-
:The simulation runs under the condition that the amount of uninfected ''E. coli'' is significantly smaller than others.The quantity of uninfected ''E. coli'' keeps at a low level, which may have economical meaning in practical, since our goal is to get free displayed phage. Besides, the figure also shows the infected ''E. coli'' population dominates the population of free phage.  
+
 
 +
The simulation above starts with the condition that the amount of uninfected ''E. coli'' is significantly smaller than the other two. The quantity of uninfected ''E. coli'' stays at a low level, which may have economic significance in practice, since our goal is to get free displayed phage. Besides, the figure also shows that the infected ''E. coli'' population dominates the population of free phage.  
[[File:Phage dyn2.jpg|center|thumb|700px|caption|Figure2  simulation value: x0=v0=2.00E5 y0=2.00E3]]
[[File:Phage dyn2.jpg|center|thumb|700px|caption|Figure2  simulation value: x0=v0=2.00E5 y0=2.00E3]]
-
The same as Figure1, in this case, the population of infected ''E. coli'' also dominates the population of free phage. However, the excess amount of uninfected ''E. coli'' results in large amount of free phage infecting ''E. coli''. Therefore, over the simulation time of 15 hours, we will get least free phage among this three cases. And the increasing rate of free phage rise significantly in this case, this is probably because large amount of free phage infected ''E. coli'' therefore leads to a significant rise in the amount of infected phage, which can release free phage later.
+
 
 +
In the above case, we start with a large excess of uninfected ''E. coli''. This results in a large number of phage infecting ''E. coli'' rather than staying free. Therefore, over 15 hours, this simulation produces the least free phage. However, the rate at which free phage are created rises significantly in this case; this is probably because a large number of phage infect ''E. coli'', all of which can release free phage later.
[[File:Phage dyn3.jpg|center|thumb|700px|caption|Figure3  simulation value: x0=y0=v0=2.00E5]]
[[File:Phage dyn3.jpg|center|thumb|700px|caption|Figure3  simulation value: x0=y0=v0=2.00E5]]
 +
In the above simulation, we start with large numbers of both infected and uninfected ''E. coli''. As the population of free phage increases, more ''E. coli'' are infected by phage. In the first 8 hours, the number of uninfected ''E. coli'' stops rising and begins to fall. After 15 hours, this simulation has produced the most free phage.
-
A decrease of the slope of rise of uninfected ''E. coli'' is observed during the first 8 simulation hours. And even an increase of the slope of the fall of uninfected ''E. coli'' is observed later. This means probably that as the population of free phage increasing, more ''E. coli''  are infected by free phage. After 15 hours, we can get the most free phage among the three cases.
+
From these results it is evident that the population of the bacteriophage M13 primarily depends on the the population of infected ''E. coli'', which is the host of bacteriophage. Additionly, the slowing down of bacterial metabolism seems to have little effect on the reproduction of phage.
-
 
+
-
From these results it is evident that the population of the bacteriophage M13 primarily depends on the the population of infected ''E. coli'', which is the host of bacteriophage. And the slowing down of bacterial metabolism has little effect on the reproduction of phage.
+
== References ==
== References ==
-
* Gregory AW, Sachdev SS (2000) [http://www.utoronto.ca/sidhulab/pdf/08.pdf Design and Evolution of Artificial M13 coat Proteins], ''Journal of Molecular Biology'', '''300'''(1): 213-219, doi: 10.1006/jmbi.2000.3845
+
* Cattoen C (2003) ''[http://msor.victoria.ac.nz/twiki/pub/Groups/GravityGroup/PreviousProjectsInAppliedMathematics/bacteria-phage_REPORT.pdf  Bacteriaphage mathematical model applied to the cheese industry]'', Massey University, College of Sciences.
 +
* Gregory AW, Sachdev SS (2000) [http://dx.doi.org/10.1006/jmbi.2000.3845 Design and Evolution of Artificial M13 coat Proteins], ''Journal of Molecular Biology'', '''300'''(1): 213-219, doi: 10.1006/jmbi.2000.3845
 +
* Payne RJH, jansen VAA (2001) [http://dx.doi.org/doi:10.1006/jtbi.2000.2198 Understanding Bacteriaphage therapy as a density-dependent kinetic process], ''Journal of Theoretical Biology'', '''208'''(1): 37-48, doi:10.1006/jtbi.2000.2198
* Slonczewski JL, Foster JW (2010) ''[http://www.wwnorton.com/college/biology/microbiology2/ch/11/etopics.aspx Microbiology: An Evolving Science]'', 2nd edition. W. W. Norton &amp; Company
* Slonczewski JL, Foster JW (2010) ''[http://www.wwnorton.com/college/biology/microbiology2/ch/11/etopics.aspx Microbiology: An Evolving Science]'', 2nd edition. W. W. Norton &amp; Company
-
* Payne RJH, jansen VAA (2001) [http://dx.doi.org/doi:10.1006/jtbi.2000.2198 Understanding Bacteriaphage therapy as a density-dependent kinetic process], ''Journal of Theoretical Biology'', '''208'''(1): 37-48, doi:10.1006/jtbi.2000.2198
 
-
* Cattoen C (2003) ''[http://msor.victoria.ac.nz/twiki/pub/Groups/GravityGroup/PreviousProjectsInAppliedMathematics/bacteria-phage_REPORT.pdf  Bacteriaphage mathematical model applied to the cheese industry]''
 
-
*A.O. Converse, J.D. Optekar(1993) ''[http://onlinelibrary.wiley.com/doi/10.1002/bit.260420120/pdf: A synergistic Kinetics Model for Enzymatic Cellulose Hydrolysis Compared to degree-of-synergism Experimental Results]''
 
-
 
</div> <!-- /main_body-->
</div> <!-- /main_body-->
<html></div> <!-- /mids --></html>
<html></div> <!-- /mids --></html>

Latest revision as of 16:26, 3 October 2011

Phage Replication

A basic activity in our biorefinery is the degradation of cellulose, due to the presence of enzymes. For our phage system, we are not only concerned with the activities and amount of enzymes, but also with the metabolism and activities of bacteriophage.

In particular, it would be good to verify that infected E. coli in the system don't get outcompeted and die out, since they are necessary for the system to work.

Contents

M13 Replication

M13 is a filamentous bacteriophage: a worm-like virus approximately 1 um long with a 10 nm diameter that infects only E. coli.

  • The viral particle consists of a single-stranded, closed circular DNA core surrounded by a protein coat.
  • Prior to virus assembly, the coat proteins are fixed in the bacterial membrane by transmembrane domains.
  • During assembly, viral DNA is extruded through the membrane and enveloped by coat proteins.
  • The ends of the assembled virus are capped by four minor coat proteins, and the length of the filament is covered by several thousand copies of the major coat protein pVIII.
  • The M13 phage attacks E. coli (host), multiplies in the host cell cytoplasm, and is released without causing the bacteria's death (non-lytic).

Model construction

As a fundamental rule, the rate of change of population = production rate of population - loss rate of population

Model for non-lytic M13 phage:

Edinburgh-phagerepcycle.png

Equations

  • dx/dt=a*k1*x-b*v*x
The rate of change in the number of uninfected E. coli equals the rate at which they replicate, minus the rate at which they become infected by phage.
  • dy/dt=a*k2*y+b*v*x
The rate of change in the number of infected E. coli equals the rate at which they replicate, plus the rate at which uninfected E. coli become infected by phage.
  • dv/dt=c*y-b*v*x-m*v
The rate of change in the number of free phage equals the rate at which phage are released by infected E. coli, minus the rate at which phage infect E. coli, and also minus the rate at which phage decay.
X(t) — uninfected E. coli
Y(t) — infected E. coli
V(t) — free phage
a — replication coefficient of E. coli
b — transmission coefficient of phage
c — replication coefficient of phage
m — decay rate of phage
K1, K2 — account for the difference of the rate of replication between infected E. coli and uninfected E. coli

Simulations

The MATLAB code uses a Runge-Kutta method of order four to solve the system.

We tried modelling a number of different starting conditions.

Figure1 simulation value: x0=2.00E3 y0=v0=2.00E5

The simulation above starts with the condition that the amount of uninfected E. coli is significantly smaller than the other two. The quantity of uninfected E. coli stays at a low level, which may have economic significance in practice, since our goal is to get free displayed phage. Besides, the figure also shows that the infected E. coli population dominates the population of free phage.

Figure2 simulation value: x0=v0=2.00E5 y0=2.00E3

In the above case, we start with a large excess of uninfected E. coli. This results in a large number of phage infecting E. coli rather than staying free. Therefore, over 15 hours, this simulation produces the least free phage. However, the rate at which free phage are created rises significantly in this case; this is probably because a large number of phage infect E. coli, all of which can release free phage later.

Figure3 simulation value: x0=y0=v0=2.00E5

In the above simulation, we start with large numbers of both infected and uninfected E. coli. As the population of free phage increases, more E. coli are infected by phage. In the first 8 hours, the number of uninfected E. coli stops rising and begins to fall. After 15 hours, this simulation has produced the most free phage.

From these results it is evident that the population of the bacteriophage M13 primarily depends on the the population of infected E. coli, which is the host of bacteriophage. Additionly, the slowing down of bacterial metabolism seems to have little effect on the reproduction of phage.

References