Team:EPF-Lausanne/Our Project/TetR mutants/MITOMI data

From 2011.igem.org

(Difference between revisions)
(In vitro characterization)
(In vitro characterization)
Line 336: Line 336:
<html> <a href=http://partsregistry.org/Part:BBa_K613019>BBa_K613019</a></html>
<html> <a href=http://partsregistry.org/Part:BBa_K613019>BBa_K613019</a></html>
-
===In vitro characterization===
+
===In Vitro Characterization===
Using the <html> <a href="https://2011.igem.org/Team:EPF-Lausanne/Our_Project/TetR_mutants/MITOMI_data">MITOMI</a></html> technique we determined the DNA binding landscape of the TetR P39Q Y42M mutant. To do so, first we designed and generated the library of double stranded DNA sequences that cover all possible single base substitution within the tetO operator sequence. Based on that library we measured the dissociation constants of the mutant to variable tetO-like sequences and determined the specificity of the mutant to the tet operator sequence (expressed as a PWM). For the P39Q Y42M mutant we observed the decrease of the specificity compared to the wild-type tetR sequence.
Using the <html> <a href="https://2011.igem.org/Team:EPF-Lausanne/Our_Project/TetR_mutants/MITOMI_data">MITOMI</a></html> technique we determined the DNA binding landscape of the TetR P39Q Y42M mutant. To do so, first we designed and generated the library of double stranded DNA sequences that cover all possible single base substitution within the tetO operator sequence. Based on that library we measured the dissociation constants of the mutant to variable tetO-like sequences and determined the specificity of the mutant to the tet operator sequence (expressed as a PWM). For the P39Q Y42M mutant we observed the decrease of the specificity compared to the wild-type tetR sequence.
-
WebLogo we obtained for the P39Q Y42M mutant:
+
The WebLogo we obtained for the P39Q Y42M mutant:
[[File:EPFL2011_P39QY42M_WebLogo.png|700px]]
[[File:EPFL2011_P39QY42M_WebLogo.png|700px]]

Revision as of 02:48, 22 September 2011