Team:USTC-Software/parameter
From 2011.igem.org
USTC-Software
Parameter section
Background
A most ideal tool that already exist in electronics: User provide the part’s name, the software fetch the standard model and its associated parameter, and return a complete mathematical model with all the parameters known (for instance, the PROTEL-software can easily get the released device from the NI company with all the response parameters standardized from a device library).
But temporally, the knowledge and cognition level of synthetic biology do not support this:
Most parts do not have a standard model associated with it. Some parameters of the parts haven’t been measured yet. For some parts with quantitative parameter value, which is highly context dependent, is hard to transfer with defined parameter across different hosts.
More consideration
Why do we try automatic parameter fitting(or estimation, adjustment)?
I.If it’s a big network with too many parameters undefined, it would get the user exhausted adjusting all the empty parameters by hand according to his/her experience and web resource. Networks generated by rule based modeling is ordinarily large.
II.Compared to manually parameter adjustment, in silicon auto parameter adjustment is more convenient. It gives an estimation of the interest parameter value according to wet lab data, thus free the user from spending too much time on estimating a good parameter.
Successful examples
We adopted a demo from a Tinkercell tutorial website on implementing a simple repressilator. After the network is generated by hand, the parameters are left behind to the user to adjust themselves. But as you can see from the following four figures, the process is tough and time consuming. ( more snapshots of the process are eliminated )
The four figures above show a difficult parameter adjustment process by hand.
By contrast, parameters estimated by our approach in silicon can be done in a timely fashion. It’s fast and convenient. (see figure below)
Algorithm
Particle swarm optimization (PSO) Algorithm
Particle swarm optimization (PSO) is a population based stochastic optimization technique developed by Dr. Eberhart and Dr. Kennedy in 1995, inspired by social behavior of bird flocking or fish schooling.
Each particle keeps track of its coordinates in the problem space which are associated with the best solution (fitness) it has achieved so far. (The fitness value is also stored.) This value is called pbest. Another "best" value that is tracked by the particle swarm optimizer is the best value, obtained so far by any particle in the neighbors of the particle. This location is called lbest. when a particle takes all the population as its topological neighbors, the best value is a global best and is called gbest.
The particle swarm optimization concept consists of, at each time step, changing the velocity of (accelerating) each particle toward its pbest and lbest locations (local version of PSO). Acceleration is weighted by a random term, with separate random numbers being generated for acceleration toward pbest and lbest locations.
PSO has been successfully applied in many research and application areas. It is demonstrated that PSO gets better results in a faster, cheaper way compared with other methods.