Team:DTU-Denmark/Vision

From 2011.igem.org

Revision as of 12:33, 20 September 2011 by Lri (Talk | contribs)

Vision

The idea

The chitobiose system in E. coli is regulated in a highly interesting way: A small RNA regulates the expression in a manner that is conceptually similar to the highly versatile miRNAs of Eukaryotes. The RNA selectively targets and facilitates the degradation of the mRNA of its target gene. The region used for targeting is easily identified upon inspection of the small RNA sequence as it is highly similar to the targeted Shine-Dalgarno.

We believe it is possible use this system as an engineering framework for trans-acting RNA regulation. Since previous work on small RNAs in bacteria show that it is possible control the target of a small RNA by changing its sequence ???CITE???, this system could act as a universal tool for easy and specific gene silencing, both outside and within the Biobrick standard.

As an added bonus this system would work in addition to any previously employed promoter based regulation, and due to the existence of a second small RNA to regulate the first, highly advanced schemes of regulation such as pulses can be achieved.

In short we belive this to be a "Swiss army knife" of gene silencing.

The problem(s) we solve

But why would one even want a transacting RNA system for regulating gene expression?

There are many reasons for using our system instead of, or in addition to, the more commonly used soultions. Here are a few:

The biggest reason is ease of use: Design the system in silico, order it and transform it. Done... You have now knocked down a gene. Since the small RNA, as indicated by the name, is small this is not a big expense.

The second big reason is area of applicability. Any organism that is:

  • Sequenced
  • Has known stable plasmids
  • Has hfq
  • Is transformable

Is a potential target for our system. This includes many organism that are difficult or impossible to chromosomally engineer.


The trap-RNA system can target any gene

The trap-RNA system provides unique flexibility for gene silencing in prokaryotes enabling control and tuning of gene expression. The specificity of the system depends on base pair complementarity. Therefore it can be designed to target any gene of interest by simply altering the sequences to match the target gene. Furthermore multiple trap-RNA systems can applied to the same biological circuit without interfering. Implementing sRNA and the trap-RNA into biological constructs they can be introduced by constitutive promoters or inducible promoters.