The BioBrick circuit has been represented as a network in a figure yet to be uploaded. For every reaction indicated in imaginary figure, we have assumed a first order reaction rate. The reaction constants have been taken from literature. From this, we would then have a system of first order linear ordinary differential equations. This should be solvable and thus give us a prediction as to the nature of the oscillatory behaviour of a cell. To test the appropriateness of this model, we would then experimentally measure the expression of arbitrary protein and see how close it fits.
Many expressions in language rely on the idea of time. Here, we shall take a journey through time, from the idea of clock synchronisation, first shown about 400 years ago by Christiaan Huygens, to the recent observations of this synchronisation phenomenon in nature. Currently, an understanding of this process is currently being carried out at the genetic level. A union of physical modelling with mathematical theory and biological experimentation is leading to a deeper understanding of synchronisation in all disciplines, but particularly in the biological sciences.
Read the full synchronisation discussion here!