Team:UQ-Australia/Parts

From 2011.igem.org




The human circadian rhythm drives many important processes in the body in accordance with the sleep/wake cycle. A characteristic of this biological clock is the periodic oscillation of gene expression. Current parts in the Registry designed to regulate periodic oscillations of gene expression have shown limited success.

Here we demonstrate a biological clock being standardised as a set of BioBrick parts.

Our network is controlled by an engineered promoter, Plac/ara, which features both an activator and a repressor domain. This controls the production of downstream genes to activate other inducible promoters, pBAD and GlnAp2, eventually leading to the production of a repressor protein, lacI, which inhibits Plac/ara, resulting in oscillatory expression. This project shows the feasibility of standardising the biological clock in E. coli and grounds further development for applications in regulated drug/hormone delivery and ion channel control.

We were not completely successful in our experimental endeavours towards making the BioBrick parts to be submitted to the registry, however we were able to add BioBrick sites to each part listed below. Therefore, except for Plac/ara we had all the parts ready to be cloned into the iGEM submission vector pSB1C3. For more information on the laboratory work please see the Project page.

UQ-Australia logo 2011.png

Parts

MultiplePromoter image.png Plac/ara

A multi-domain promoter that is self-inducible by arabinose. Gene expression regulated by LacI binding to special operator sites in the promoter

Gene image.png glnG

Encodes for DNA-binding protein(NR1), the activity of which depends on its phosphorylation. Drives expression of genes under GlnAp2 promoter

Gene image.png araC

Encodes for a positive regulatory protein for L-arabinose utilization in E.coli

PositivePromoter.png pBAD

L-arabinose inducible promoter

Gene image.png LacI

DNA-binding transcriptional inhibitor for lac-operon

PositivePromoter.png GlnAp2

Promoter driven by phosphorylated GlnG(NR1)