Team:Paris Bettencourt/Designs/List

From 2011.igem.org

(Difference between revisions)
 
Line 32: Line 32:
</table>
</table>
 +
<h2>Using bistable switches</h2>
-
<h2>Positive feedback autoloop</h2>
 
-
 
-
<h2>Using bistable switches</h2>
 
<p>During our brainstormings, we noticed several natural or artificial bistable switches that could serve both as a receptor and an auto-amplifier. One molecule carefully chosen could toggle the switch in another position. All we have to do is see if it diffuses through the nanotubes.
<p>During our brainstormings, we noticed several natural or artificial bistable switches that could serve both as a receptor and an auto-amplifier. One molecule carefully chosen could toggle the switch in another position. All we have to do is see if it diffuses through the nanotubes.
<table>
<table>
Line 53: Line 51:
   <td style="width:200px; text-align:center"><a href="https://2011.igem.org/Team:Paris_Bettencourt/Lambda_switch"><img style="width:150px; margin-top:20px;" src="https://static.igem.org/mediawiki/2011/9/94/Lambda_switch-button.png"></a>
   <td style="width:200px; text-align:center"><a href="https://2011.igem.org/Team:Paris_Bettencourt/Lambda_switch"><img style="width:150px; margin-top:20px;" src="https://static.igem.org/mediawiki/2011/9/94/Lambda_switch-button.png"></a>
   </td>
   </td>
-
   <td><b><a href="https://2011.igem.org/Team:Paris_Bettencourt/Lambda_switch">Lambda switch</a></b>  We took advantage of an artificial switch in <i>E.coli</i> created by the <a href="http://parts.mit.edu/igem07/index.php/Peking">PKU team of 2007</a>. We tried to see if we could toggle it from one state to the other using molecules diffusing through the nanotubes.
+
   <td><b><a href="https://2011.igem.org/Team:Paris_Bettencourt/Lambda_switch">Lambda switch</a></b>  We took advantage of an artificial switch in <i>E.coli</i> created by the <a href="https://2007.igem.org/Peking">PKU team of 2007</a>. We tried to see if we could toggle it from one state to the other using molecules diffusing through the nanotubes.
   </td>
   </td>
</tr>
</tr>

Latest revision as of 20:11, 28 October 2011

Team IGEM Paris 2011

Design List

Concentrator

In order to observe a celar change in phenotype during diffusion experiments, we worked on a YFP-TetR fusion protein concentrator.

YFP concentrator This design relies on a TetO-array which allow us to concentrate YFP-TetR fusion proteins.

Positive feedback autoloop

We designed entirely these new devices. They are composed of an emitter, a receptor and an amplifier sub-unit.

T7 RNA polymerase diffusion In this design, we introduce the use of the T7 polymerase both as the transfer molecule and as the auto-amplification system.
tRNA amber diffusion The tRNA amber allows the translation of a functionnal T7 RNA polymerase in the receiver cell. This will then trigger the auto-amplification loop.

Using bistable switches

During our brainstormings, we noticed several natural or artificial bistable switches that could serve both as a receptor and an auto-amplifier. One molecule carefully chosen could toggle the switch in another position. All we have to do is see if it diffuses through the nanotubes.

ComS diffusion We took advantage of a switch already existing in B.Subtilis (the ComK/ComS switch) and tried to see if we could toggle it from one state to the other using molecules diffusing through the nanotubes.
Sin Operon We took advantage of a switch already existing in B.Subtilis (the Sin operon switch, regulating sporulation and biofilm formation) and tried to see if we could toggle it from one state to the other using molecules diffusing through the nanotubes.
Lambda switch We took advantage of an artificial switch in E.coli created by the PKU team of 2007. We tried to see if we could toggle it from one state to the other using molecules diffusing through the nanotubes.

Order of magnitude of size