Team:UCSF/ProjectOverview
From 2011.igem.org
TheTinaChen (Talk | contribs) |
|||
Line 1: | Line 1: | ||
- | |||
{{Template:UCSF}} | {{Template:UCSF}} | ||
Line 27: | Line 26: | ||
<div id="rightcontenttext"> <p><p> | <div id="rightcontenttext"> <p><p> | ||
- | <h3red> | + | <h3red>Background</h3red> <p> |
- | <regulartext> | + | <regulartext>Agglutination, a type of aggregation specific to mating in Sacchromyces cerevisiae, occurs with two surface proteins: alpha-agglutinin and a-agglutinin. Alpha-agglutinin is produced only by alpha-cells and a-agglutinin is produced only by a-cells. During mating, each cell releases pheromones and accepts pheromones secreted by other cells. The alpha-cells respond to a-cell pheromones while the a-cells respond to alpha pheromones. When each cell has received enough of the correct molecule, it will begin to make its agglutinin. In close proximity, the alpha-agglutinin and the a-agglutinin will aggregate, causing cell-cell adhesion. The two yeast cells will come close enough and eventually fuse into one diploid cell. <p> </regulartext> |
- | <regulartext> | + | <regulartext> We took a closer look into the protein, a-agglutinin, and found that it was composed of two subunits: Aga1p and Aga2p. The Aga1 and Aga2 genes lie under a promoter that switches on when the cell has received pheromones from a mate. When the proteins are expressed, Aga1p is attached to the cell surface by a GPI anchor and is also connected to Aga2p through disulfide bonds. <p> </regulartext> |
- | <regulartext> | + | <regulartext>For our project, we decided to utilize the a-agglutinin half of the aggregation display system to form artificial biofilms. By placing sequences of strong adhesive proteins behind the GPI anchor-Aga1-Aga2 gene and overexpressing them, we were able to create yeast cells that could adhere to different surfaces and even other yeast cells. A couple genes we used to attach to the end of the Aga1p-Aga2p complex were mice cadherins, proteins that mussels used to stick to rocks, and proteins used by other yeast species to initiate biofilm formation. <p></regulartext> |
<regulartext>Paragraph 4</regulartext> | <regulartext>Paragraph 4</regulartext> |
Revision as of 06:25, 27 September 2011