Team:Washington/Magnetosomes/Background
From 2011.igem.org
Line 2: | Line 2: | ||
__NOTOC__ | __NOTOC__ | ||
- | + | <center><big><big><big><big>iGEM Toolkits</big></big></big></big></center><br><br> | |
+ | |||
As with the expansion of the iGEM competition, many iGEM teams have started to investigate the possibility of working with large-scale genomes. Large-scale gene manipulation often requires the use of tools which allow multiple gene inserts as to bring the cloning project from single gene level to a multiple gene level. However, the current BioBrick standard vectors available through iGEM are not designed for multiple-insert cloning. Therefore, the UW iGEM team decided to research methods to improve cloning efficiency and as a result, two "toolkits" were submitted to the registry. | As with the expansion of the iGEM competition, many iGEM teams have started to investigate the possibility of working with large-scale genomes. Large-scale gene manipulation often requires the use of tools which allow multiple gene inserts as to bring the cloning project from single gene level to a multiple gene level. However, the current BioBrick standard vectors available through iGEM are not designed for multiple-insert cloning. Therefore, the UW iGEM team decided to research methods to improve cloning efficiency and as a result, two "toolkits" were submitted to the registry. | ||
Revision as of 01:18, 23 September 2011
As with the expansion of the iGEM competition, many iGEM teams have started to investigate the possibility of working with large-scale genomes. Large-scale gene manipulation often requires the use of tools which allow multiple gene inserts as to bring the cloning project from single gene level to a multiple gene level. However, the current BioBrick standard vectors available through iGEM are not designed for multiple-insert cloning. Therefore, the UW iGEM team decided to research methods to improve cloning efficiency and as a result, two "toolkits" were submitted to the registry.
Gibson Assembly Toolkit
As a continuation of the 2010 UW IGEM project, this year we developed and submitted several plasmid backbones that are Gibson cloning method friendly-- aka pGA vectors. It is called the Gibson Assembly Toolkit
- What's in the Gibson Assembly Toolkit?
- Five plasmid backbones
- 2 High copy extraction vectors: pGA1A3, pGA1C3
- 3 low copy assembly vectors: pGA3K3, pGA4A5, pGA4C5
Magnetosome Toolkit
In addition, we were also ambitious about assembling a large gene-construct of over 16 kb. Therefore, utilizing our pGA vectors and Gibson cloning methods, the Magnetosome Toolkit was developed with the goal to build magnetic E.Coli; a novel characteristic expressed solely by magnetotactic bacteria, such as Magnetospirillum magneticum strain AMB-1.
What’s in the Magnetosome Toolkit?
- A set of the 18 essential genes for the various steps of magnetosome formation.
- Our favorite genes in pGA vectors
- A table compiling individual gene functions from our literature search