Team:Valencia/Modeling

From 2011.igem.org

(Difference between revisions)
Line 267: Line 267:
<h2>pH variations with light</h2>
<h2>pH variations with light</h2>
-
<div><span><a href="https://static.igem.org/mediawiki/2011/9/90/VLC_Un_escalo.png" class="image" ><img alt="" src="https://static.igem.org/mediawiki/2011/9/90/VLC_Un_escalo.png" width="800" align="center" border="0" /></a></span></div>
+
<center><div><span><a href="https://static.igem.org/mediawiki/2011/9/90/VLC_Un_escalo.png" class="image" ><img alt="" src="https://static.igem.org/mediawiki/2011/9/90/VLC_Un_escalo.png" width="800" align="center" border="0" /></a></span></div></center>
 +
Now we need a transfer function that giving a light input delivers and output such as the one observed. To that purpose we can observe that the response (pH variation) behaves like a first order system with a lagging time.<br>
 +
We work on the frequency plane (using Laplace transforms). Thus, transfer function of a first order system with a lagging time is such as:<br>
 +
<center><div><span><a href="https://static.igem.org/mediawiki/2011/a/a6/VLC_Eq1.png" class="image" ><img alt="" src="https://static.igem.org/mediawiki/2011/a/a6/VLC_Eq1.png" width="400" align="center" border="0" /></a></span></div></center>
 +
Using the transfer function of the system we can get the response such as:<br>
 +
y(t) = pH - pH<sub>0</sub><br>
 +
y(s)= L [y(t)] where L[] function is Laplace transform<br>
 +
y(s) = G(s)·u(s)<br>
 +
With the experimental data we have obtained the parameters values:<br>
 +
<center><div><span><a href="https://static.igem.org/mediawiki/2011/9/93/VLC_Param.png" class="image" ><img alt="" src="https://static.igem.org/mediawiki/2011/9/93/VLC_Param.png" width="400" align="" border="0" /></a></span></div></center>
 +
And with them we can adjust almost perfectly the experimental upwards dynamics:
 +
<center><div><span><a href="https://static.igem.org/mediawiki/2011/6/6c/VLC_Realisim.png" class="image" ><img alt="" src="https://static.igem.org/mediawiki/2011/6/6c/VLC_Realisim.png" width="500" align="" border="0" /></a></span></div></center>
 +
We assume that the dynamics downwards should have the same underlying physics, so parameters should remain the same, we obtain a theoretical simulation and tallies real data:
 +
<center><div><span><a href="https://static.igem.org/mediawiki/2011/4/41/VLC_Baixada.png" class="image" ><img alt="" src="https://static.igem.org/mediawiki/2011/4/41/VLC_Baixada.png" width="800" align="" border="0" /></a></span></div></center>
<h2>Bacteriocin efficiency on killing bacteria</h2>
<h2>Bacteriocin efficiency on killing bacteria</h2>

Revision as of 00:53, 22 September 2011



Modeling

pH variations with light

Now we need a transfer function that giving a light input delivers and output such as the one observed. To that purpose we can observe that the response (pH variation) behaves like a first order system with a lagging time.
We work on the frequency plane (using Laplace transforms). Thus, transfer function of a first order system with a lagging time is such as:
Using the transfer function of the system we can get the response such as:
y(t) = pH - pH0
y(s)= L [y(t)] where L[] function is Laplace transform
y(s) = G(s)·u(s)
With the experimental data we have obtained the parameters values:
And with them we can adjust almost perfectly the experimental upwards dynamics:
We assume that the dynamics downwards should have the same underlying physics, so parameters should remain the same, we obtain a theoretical simulation and tallies real data:

Bacteriocin efficiency on killing bacteria