Team:Paris Bettencourt/Experiments

From 2011.igem.org

(Difference between revisions)
Line 12: Line 12:
</tr>
</tr>
</table>
</table>
-
<h2>Our major designs</h2>
+
<h2>New devices</h2>
-
<p>These constructs took most of our time this summer and we really put some effort in their construction. See how they turned out.</p>
+
<p>We designed entirely these new devices. They are usually composed of an emitter, a receptor and an amplifier sub-unit.</p>
<table>
<table>
<tr>
<tr>
   <td style="width:200px; text-align:center"><a href="https://2011.igem.org/Team:Paris_Bettencourt/Experiments/YFP_TetR_diffusion"><img style="width:150px" src="https://static.igem.org/mediawiki/2011/d/d0/YFP_concentration_button.png"></a>
   <td style="width:200px; text-align:center"><a href="https://2011.igem.org/Team:Paris_Bettencourt/Experiments/YFP_TetR_diffusion"><img style="width:150px" src="https://static.igem.org/mediawiki/2011/d/d0/YFP_concentration_button.png"></a>
   </td>
   </td>
-
   <td><b><a href="https://2011.igem.org/Team:Paris_Bettencourt/Experiments/YFP_TetR_diffusion">YFP concentration</a></b>: this design relies on a TetO-array which allow us to concentrate YFP-TetR fusion proteins.
+
   <td><b><a href="https://2011.igem.org/Team:Paris_Bettencourt/Experiments/YFP_TetR_diffusion"></b> This design relies on a TetO-array which allow us to concentrate YFP-TetR fusion proteins.
   </td>
   </td>
</tr>
</tr>
Line 24: Line 24:
   <td style="width:200px; text-align:center;"><a href="https://2011.igem.org/Team:Paris_Bettencourt/Experiments/T7_diffusion"><img style="width:150px; margin-top:20px;" src="https://static.igem.org/mediawiki/2011/e/e4/T7_button.png"></a>
   <td style="width:200px; text-align:center;"><a href="https://2011.igem.org/Team:Paris_Bettencourt/Experiments/T7_diffusion"><img style="width:150px; margin-top:20px;" src="https://static.igem.org/mediawiki/2011/e/e4/T7_button.png"></a>
   </td>
   </td>
-
   <td><b><a href="https://2011.igem.org/Team:Paris_Bettencourt/Experiments/T7_diffusion">T7 RNA polymerase diffusion</a></b>: in this design, we used the T7 polymerase both as the transfer molecule and as the auto-amplification system.
+
   <td><b><a href="https://2011.igem.org/Team:Paris_Bettencourt/Experiments/T7_diffusion">T7 RNA polymerase diffusion</a></b> In this design, we introduce the use of the T7 polymerase both as the transfer molecule and as the auto-amplification system.
   </td>
   </td>
</tr>
</tr>
Line 30: Line 30:
   <td style="width:200px; text-align:center"><a href="https://2011.igem.org/Team:Paris_Bettencourt/Experiments/tRNA_diffusion"><img style="width:150px; margin-top:20px;" src="https://static.igem.org/mediawiki/2011/5/53/TRNAamber-button.png"></a>
   <td style="width:200px; text-align:center"><a href="https://2011.igem.org/Team:Paris_Bettencourt/Experiments/tRNA_diffusion"><img style="width:150px; margin-top:20px;" src="https://static.igem.org/mediawiki/2011/5/53/TRNAamber-button.png"></a>
   </td>
   </td>
-
   <td><b><a href="https://2011.igem.org/Team:Paris_Bettencourt/Experiments/tRNA_diffusion">tRNA amber diffusion</a></b>: the tRNA amber is the smallest molecule we are trying to get pass the nanotubes.
+
   <td><b><a href="https://2011.igem.org/Team:Paris_Bettencourt/Experiments/tRNA_diffusion">tRNA amber diffusion</a></b> The tRNA amber is the smallest molecule we are trying to get pass the nanotubes.
   </td>
   </td>
</tr>
</tr>
 +
</table>
 +
<h2>Using bistable switches</h2>
 +
<p>During our brainstormings, we noticed several natural or artificial bistable switches that could serve both as a receptor and an auto-amplifier. One molecule carefully chosen could toggle the switch in another position. All we have to do is see if it diffuses through the nanotubes.
 +
<table>
<tr>
<tr>
-
   <td style="width:200px; text-align:center"><a href="https://2011.igem.org/Team:Paris_Bettencourt/Experiments/ComS_diffusion"><img style="width:150px; margin-top:20px;" src="https://static.igem.org/mediawiki/2011/2/21/ComS-button.png"></a>
+
   <td style="width:200px; text-align:center"><a href="<a href="https://2011.igem.org/Team:Paris_Bettencourt/Experiments/ComS_diffusionn">"><img style="width:150px; margin-top:20px;" src="https://static.igem.org/mediawiki/2011/2/21/ComS-button.png"></a>
   </td>
   </td>
-
   <td><b><a href="https://2011.igem.org/Team:Paris_Bettencourt/Experiments/ComS_diffusionn">ComS diffusion</a></b>: we took advantage of a switch already existing in <i>B.Subtilis</i> (the ComK/ComS switch) and tried to see if we could toggle it from one state to the other using molecules diffusing through the nanotubes.
+
   <td><b><a href="<a href="https://2011.igem.org/Team:Paris_Bettencourt/Experiments/ComS_diffusionn">">ComS diffusion</a></b> We took advantage of a switch already existing in <i>B.Subtilis</i> (the ComK/ComS switch) and tried to see if we could toggle it from one state to the other using molecules diffusing through the nanotubes.
 +
  </td>
 +
</tr>
 +
<tr>
 +
  <td style="width:200px; text-align:center"><a href="https://2011.igem.org/Team:Paris_Bettencourt/SinOp"><img style="width:150px; margin-top:20px;" src="https://static.igem.org/mediawiki/2011/2/21/ComS-button.png"></a>
 +
  </td>
 +
  <td><b><a href="https://2011.igem.org/Team:Paris_Bettencourt/SinOp">Sin Operon</a></b>
   </td>
   </td>
</tr>
</tr>
-
</table>
 
-
<h2>SinOp and PKU's Push-On/Push-Off systems</h2>
 
-
<p>In addition to our major constructs, we found along the summer several other ideas to take advantage of already existing systems to test the nanotube network. Here are the experiments we did regarding those designs.</p>
 
-
<table>
 
<tr>
<tr>
-
   <td style="width:200px; text-align:center"><a href="https://2011.igem.org/Team:Paris_Bettencourt/Experiments/ComS_diffusion"><img style="width:150px; margin-top:20px;" src="https://static.igem.org/mediawiki/2011/2/21/ComS-button.png"></a>
+
   <td style="width:200px; text-align:center">Lambda switch<a href="https://2011.igem.org/Team:Paris_Bettencourt/Lambda_switch"><img style="width:150px; margin-top:20px;" src="https://static.igem.org/mediawiki/2011/2/21/ComS-button.png"></a>
   </td>
   </td>
-
   <td><b><a href="https://2011.igem.org/Team:Paris_Bettencourt/Experiments/ComS_diffusionn">ComS diffusion</a></b>: we took advantage of a switch already existing in <i>B.Subtilis</i> (the ComK/ComS switch) and tried to see if we could toggle it from one state to the other using molecules diffusing through the nanotubes.
+
   <td><b><a href="https://2011.igem.org/Team:Paris_Bettencourt/Lambda_switch">Lambda switch</a></b>
   </td>
   </td>
</tr>
</tr>
</table>
</table>
 +
 +
<html>
<html>

Revision as of 13:45, 21 September 2011

Team IGEM Paris 2011

Experiments

You can find here all the experiments we did in the lab! The data is organized by design and you will be able to find both the characterization steps and our diffusion experiments.

Preliminaries experiments

Preliminaries experiments: go back and see how we re-did the experiment of the original nanotubes paper.

New devices

We designed entirely these new devices. They are usually composed of an emitter, a receptor and an amplifier sub-unit.

This design relies on a TetO-array which allow us to concentrate YFP-TetR fusion proteins.
T7 RNA polymerase diffusion In this design, we introduce the use of the T7 polymerase both as the transfer molecule and as the auto-amplification system.
tRNA amber diffusion The tRNA amber is the smallest molecule we are trying to get pass the nanotubes.

Using bistable switches

During our brainstormings, we noticed several natural or artificial bistable switches that could serve both as a receptor and an auto-amplifier. One molecule carefully chosen could toggle the switch in another position. All we have to do is see if it diffuses through the nanotubes.

"> ">ComS diffusion We took advantage of a switch already existing in B.Subtilis (the ComK/ComS switch) and tried to see if we could toggle it from one state to the other using molecules diffusing through the nanotubes.
Sin Operon
Lambda switch Lambda switch