Team:Imperial College London/Project Chemotaxis Specifications
From 2011.igem.org
RebekkaBauer (Talk | contribs) |
|||
Line 11: | Line 11: | ||
<p><b>2. Uptake of bacteria into roots.</b> | <p><b>2. Uptake of bacteria into roots.</b> | ||
<p><ul class="a"> | <p><ul class="a"> | ||
- | <li><p>We want the bacteria to get taken up into the plant roots to ensure that the concentration of indole-3-acetic acid (IAA) in the plant is increased. If the bacteria remained outside the roots, this goal may also be reached but it may be harder to increase internal IAA concentration. In addition, uptake of bacteria into the roots followed by secretion of chemicals presents a novel platform for modifying plants without genetically modifying the plant genomes. | + | <li><p>We want the bacteria to get taken up into the plant roots to ensure that the concentration of indole-3-acetic acid (IAA) in the plant is increased. If the bacteria remained outside the roots, this goal may also be reached but it may be harder to increase internal IAA concentration. In addition, uptake of bacteria into the roots followed by secretion of chemicals presents a novel platform for modifying plants without genetically modifying the plant genomes.</p> |
+ | </ul> | ||
+ | <p><b>3. The construct must be as modular as possible.</b> | ||
+ | <p><ul class="a"> | ||
+ | <li><p>Early on in our project we discovered (thanks to the modellers) that different concentrations of chemoreceptors on the surface of the cell allows the chemotaxis pathway to be saturated at different concentrations of malate. This means that we might be able to control the exact distance at which the chassis will stop making a bias walk towards the plant. Therefore, allowing us to test this construct with different promoters might allow us to study this phenomenon.</p> | ||
</ul> | </ul> | ||
- | |||
<p>The chemotaxis module is responsible for ensuring that our bacteria move towards roots. For this, the bacteria need to be able to sense a common root exudate. We have chosen <i>E. coli</i> chemotaxis to be rewired towards malic acid (also referred to as malate), a compound found in the TCA cycle. It is released from the roots at low concentrations. Since our chassis, <i>Escherichia coli</i> does not normally exhibit chemotaxis towards malate, we needed to engineer a malate-responsive sensor into the microbes that will enable them to perform chemotaxis towards roots.</p> | <p>The chemotaxis module is responsible for ensuring that our bacteria move towards roots. For this, the bacteria need to be able to sense a common root exudate. We have chosen <i>E. coli</i> chemotaxis to be rewired towards malic acid (also referred to as malate), a compound found in the TCA cycle. It is released from the roots at low concentrations. Since our chassis, <i>Escherichia coli</i> does not normally exhibit chemotaxis towards malate, we needed to engineer a malate-responsive sensor into the microbes that will enable them to perform chemotaxis towards roots.</p> | ||
<p>Following chemotaxis towards the roots, our bacteria should be taken up into the roots. We want the bacteria to get taken up into the plant roots to ensure that the concentration of indole-3-acetic acid (IAA) in the plant is increased. If the bacteria remained outside the roots, this goal may also be reached but it may be harder to increase internal IAA concentration. In addition, uptake of bacteria into the roots followed by secretion of chemicals presents a novel platform for modifying plants without genetically modifying the plant genomes. | <p>Following chemotaxis towards the roots, our bacteria should be taken up into the roots. We want the bacteria to get taken up into the plant roots to ensure that the concentration of indole-3-acetic acid (IAA) in the plant is increased. If the bacteria remained outside the roots, this goal may also be reached but it may be harder to increase internal IAA concentration. In addition, uptake of bacteria into the roots followed by secretion of chemicals presents a novel platform for modifying plants without genetically modifying the plant genomes. |
Revision as of 10:51, 21 September 2011
Module 1: Phyto-Route
Chemotaxis is the movement of bacteria based on attraction or repulsion of chemicals. Roots secrete a variety of compounds that E. coli are not attracted to naturally. Accordingly, we engineered a chemoreceptor into our chassis that can sense malate, a common root exudate, so that it can swim towards the root. Additionally, E. coli are actively taken up by plant roots, which will allow targeted IAA delivery into roots by our system.
Specifications
1. The bacteria should actively move towards roots.
For this, the bacteria need to be able to sense a common root exudate. We have chosen E. coli chemotaxis to be rewired towards malic acid (also referred to as malate), a compound found in the TCA cycle. It is released from the roots at low concentrations.
2. Uptake of bacteria into roots.
We want the bacteria to get taken up into the plant roots to ensure that the concentration of indole-3-acetic acid (IAA) in the plant is increased. If the bacteria remained outside the roots, this goal may also be reached but it may be harder to increase internal IAA concentration. In addition, uptake of bacteria into the roots followed by secretion of chemicals presents a novel platform for modifying plants without genetically modifying the plant genomes.
3. The construct must be as modular as possible.
Early on in our project we discovered (thanks to the modellers) that different concentrations of chemoreceptors on the surface of the cell allows the chemotaxis pathway to be saturated at different concentrations of malate. This means that we might be able to control the exact distance at which the chassis will stop making a bias walk towards the plant. Therefore, allowing us to test this construct with different promoters might allow us to study this phenomenon.
The chemotaxis module is responsible for ensuring that our bacteria move towards roots. For this, the bacteria need to be able to sense a common root exudate. We have chosen E. coli chemotaxis to be rewired towards malic acid (also referred to as malate), a compound found in the TCA cycle. It is released from the roots at low concentrations. Since our chassis, Escherichia coli does not normally exhibit chemotaxis towards malate, we needed to engineer a malate-responsive sensor into the microbes that will enable them to perform chemotaxis towards roots.
Following chemotaxis towards the roots, our bacteria should be taken up into the roots. We want the bacteria to get taken up into the plant roots to ensure that the concentration of indole-3-acetic acid (IAA) in the plant is increased. If the bacteria remained outside the roots, this goal may also be reached but it may be harder to increase internal IAA concentration. In addition, uptake of bacteria into the roots followed by secretion of chemicals presents a novel platform for modifying plants without genetically modifying the plant genomes. In a paper published last year, Paungfoo-Lonhienne et al. showed that Arabidopsis and tomato plants are able to actively break down their cell wall to take up GFP-tagged E. coli and S. cerevisiae and use them as a source of nutrients.