Team:UPO-Sevilla/Project/Basic Flip Flop/Modeling/Basic Bistable

From 2011.igem.org

(Difference between revisions)
Line 25: Line 25:
                             <p>We have the expression of two different proteins, expressions that are regulated by following reactions:</p>
                             <p>We have the expression of two different proteins, expressions that are regulated by following reactions:</p>
-
                             <p><strong>TRANSCRIPTION:</strong> RNAp + Promoter &rarr; RNAp + Promoter + mRNA</p>
+
                             <p><strong>TRANSCRIPTION:</strong> <i>RNAp + Promoter &rarr; RNAp + Promoter + mRNA</i></p>
                             <p>The mRNA production will be described using Michaelis-Menten kinetics.</p>
                             <p>The mRNA production will be described using Michaelis-Menten kinetics.</p>
-
                             <p><strong>TRANSLATION:</strong> mRNA + Ribosomes &rarr; mRNA + Ribosomes + Repressor</p>
+
                             <p><strong>TRANSLATION:</strong> <i>mRNA + Ribosomes &rarr; mRNA + Ribosomes + Repressor</i></p>
                             <p>The Repressor production will be also modeled using Michaelis-Menten kinetics.</p>
                             <p>The Repressor production will be also modeled using Michaelis-Menten kinetics.</p>
-
                             <p><strong>REPRESSION:</strong> Promoter + n · Repressor &rarr; Promoter_Repressor<sub>n</sub></p>
+
                             <p><strong>REPRESSION:</strong> <i>Promoter + n · Repressor &rarr; Promoter_Repressor<sub>n</sub></i></p>
                             <p>Finally we use a Hill kinetics model for the transcription inhibition, which offers an approximation to the cooperative action.</p>
                             <p>Finally we use a Hill kinetics model for the transcription inhibition, which offers an approximation to the cooperative action.</p>
Line 57: Line 57:
                             <ul>
                             <ul>
-
                             <li>Promoter1</li>
+
                             <li>promoter1</li>
-
                             <li>Promoter2</li>
+
                             <li>promoter2</li>
                             <li>mRNA1</li>
                             <li>mRNA1</li>
                             <li>mRNA2</li>
                             <li>mRNA2</li>
-
                             <li>Repressor1/r1</li>
+
                             <li>repressor1/r1</li>
-
                             <li>Repressor2</li>
+
                             <li>repressor2</li>
                             <li>RNAp</li>
                             <li>RNAp</li>
-
                             <li>Ribosomes</li>
+
                             <li>ribosomes</li>
                            
                            
Line 96: Line 96:
                             </ul>
                             </ul>
-
<p><strong>Transcription + Repression 1:</strong></p>
+
                            <p><strong>Transcription + Repression 1:</strong></p>
-
<p>RNAp + Promoter1 + Repressor1 &rarr; RNAp + Promoter1 + Repressor1 + mRNA1</p>
+
<p><i>RNAp + promoter1 + repressor1 &rarr; RNAp + promoter1 + repressor1 + mRNA1</i></p>
                             <div class="center">
                             <div class="center">
Line 106: Line 106:
<p><strong>Transcription + Repression 2:</strong></p>
<p><strong>Transcription + Repression 2:</strong></p>
-
<p>RNAp + Promoter2 + Repressor2 &rarr; RNAp + Promoter2 + Repressor2 + mRNA2</p>
+
<p><i>RNAp + promoter2 + repressor2 &rarr; RNAp + promoter2 + repressor2 + mRNA2</i></p>
                             <div class="center">
                             <div class="center">
                               <img src="https://static.igem.org/mediawiki/2011/e/e6/UPO-BBEq2.png" alt="Transcription + Represion 2 Rate" />
                               <img src="https://static.igem.org/mediawiki/2011/e/e6/UPO-BBEq2.png" alt="Transcription + Represion 2 Rate" />
                             </div>
                             </div>
-
Rate law
+
 
<p><strong>Tanslation 1:</strong></p>
<p><strong>Tanslation 1:</strong></p>
Line 130: Line 130:
<p><strong>mRNA1/mRNA2 Degradation:</strong></p>
<p><strong>mRNA1/mRNA2 Degradation:</strong></p>
-
<p> mRNA1 &rarr; null</p>
+
<p><i> mRNA1 &rarr; null</i></p>
-
<p> mRNA2 &rarr; null</p>
+
<p><i> mRNA2 &rarr; null</i></p>
                             <div class="center">
                             <div class="center">
Line 139: Line 139:
<p><strong>Repressor1/Repressor2 Degradation:</strong></p>
<p><strong>Repressor1/Repressor2 Degradation:</strong></p>
-
<p> Repressor1 &rarr; null</p>
+
<p><i> repressor1 &rarr; null</i></p>
-
<p> Repressor2 &rarr; null</p>
+
<p><i> repressor2 &rarr; null</i></p>
-
<div class="center">
+
                            <div class="center">
                               <img src="https://static.igem.org/mediawiki/2011/c/c5/UPO-BBEq6.png" alt="Repressors Degradation Rates" />
                               <img src="https://static.igem.org/mediawiki/2011/c/c5/UPO-BBEq6.png" alt="Repressors Degradation Rates" />
                             </div>
                             </div>
 +
 +
                          <h2>Simulations</h2>
 +
 +
<p>When we initially consider the same concentrations of each species, if we let the system evolve the simulation offers the following result:</p>
 +
 +
 +
 +
                            <div class="center">
 +
                              <img src="https://static.igem.org/mediawiki/2011/d/dd/Sim1.jpg" alt="Repressors Degradation Rates" />
 +
                            </div>
 +
 +
 +
<p>The <i>repressor2</i> wins the competition: this effect is due to the stronger expression of the <i>repressor2</i></p>
 +
 +
<p>But if we establish a higher initial concentration to the <i>repressor1 mRNA</i>:</p>
 +
 +
 +
 +
                            <div class="center">
 +
                              <img src="https://static.igem.org/mediawiki/2011/2/21/Sim2.jpg" alt="Repressors Degradation Rates" />
 +
                            </div>
 +
 +
 +
<p>Now, <i>repressor1</i> wins. We can see that the maximum level reached by <i>repressor1</i> is lower.</p>
 +
 +
 +
<p>With these simulations we can see how the system is able to work on two different points.</p>
 +
 +
 +
 +
                            <div class="center">
 +
                              <img src="https://static.igem.org/mediawiki/2011/5/51/BISTABLE.jpg" alt="Repressors Degradation Rates" />
 +
                            </div>
 +
                         </div>
                         </div>

Revision as of 16:55, 20 September 2011

Grey iGEM Logo UPO icon

Basic Bistable

Introduction

To start with the model analysis, we show the reactions in which our plasmid is involved into the ‘E. Coli’ bacteria, and their kinetic laws. Due to the two expressions, each one must have the same rate law. Here we are showing a simplified analysis for every response:

We have the expression of two different proteins, expressions that are regulated by following reactions:

TRANSCRIPTION: RNAp + Promoter → RNAp + Promoter + mRNA

The mRNA production will be described using Michaelis-Menten kinetics.

TRANSLATION: mRNA + Ribosomes → mRNA + Ribosomes + Repressor

The Repressor production will be also modeled using Michaelis-Menten kinetics.

REPRESSION: Promoter + n · Repressor → Promoter_Repressorn

Finally we use a Hill kinetics model for the transcription inhibition, which offers an approximation to the cooperative action.

Diagram

Diagram BB

Here we can see all the species involved in the model for the bistable.

Equations

We define the reactions and the parameters involved in the system.

The following list shows a summary of the species:

Species:

  • promoter1
  • promoter2
  • mRNA1
  • mRNA2
  • repressor1/r1
  • repressor2
  • RNAp
  • ribosomes

Parameters:

  • Km : Michaelis constant of transcription
  • Kmu: Michaelis constant of translation
  • δ: mRNA rate of degradation
  • λ: mRNA maximum rate of synthesis
  • k: Repressor rate of synthesis
  • Kiu: Dissociation constant of repression
  • γ: Cooperativity of inhibition by the repressor

Before describing the reactions’ equations, we describe the assumptions made:

  • Repression is modeled as an inhibition of the mRNA synthesis. Instead of considering the repression as a different process, we include this effect into the Michaelis-Menten equation as a modifier of the Michaelis constant Km, assuming that the protein binds competitively with the RNAp to the promoter site, and knowing that the repressor may form multimers.
  • Due to the high values of the RNAp and ribosomes concentration versus promoter concentration, we can assume that the Michaelis-Menten rate law may change into a mass action rate law. Although this assumption is valid for the transcription process, the rate constant changes his value according to the repressor level.

Transcription + Repression 1:

RNAp + promoter1 + repressor1 → RNAp + promoter1 + repressor1 + mRNA1

Transcription + Represion 1 Rate law

Transcription + Repression 2:

RNAp + promoter2 + repressor2 → RNAp + promoter2 + repressor2 + mRNA2

Transcription + Represion 2 Rate

Tanslation 1:

Translation 1 Rate

Translation 2:

Translation 2 Rate

mRNA1/mRNA2 Degradation:

mRNA1 → null

mRNA2 → null

mRNA Degradation Rates

Repressor1/Repressor2 Degradation:

repressor1 → null

repressor2 → null

Repressors Degradation Rates

Simulations

When we initially consider the same concentrations of each species, if we let the system evolve the simulation offers the following result:

Repressors Degradation Rates

The repressor2 wins the competition: this effect is due to the stronger expression of the repressor2

But if we establish a higher initial concentration to the repressor1 mRNA:

Repressors Degradation Rates

Now, repressor1 wins. We can see that the maximum level reached by repressor1 is lower.

With these simulations we can see how the system is able to work on two different points.

Repressors Degradation Rates