Team:Washington
From 2011.igem.org
Line 10: | Line 10: | ||
==Our Sponsors== | ==Our Sponsors== | ||
[[File:Washington_HHMI.jpg|frameless|border|250px|link=http://www.hhmi.org|Howard Hughes Medical Institute]] | [[File:Washington_HHMI.jpg|frameless|border|250px|link=http://www.hhmi.org|Howard Hughes Medical Institute]] | ||
- | [[File:Washington_OSLI.png|frameless|border|250px|link=http://www.osli.ca|Oil Sands Leadership Intiative | + | [[File:Washington_OSLI.png|frameless|border|250px|link=http://www.osli.ca|Oil Sands Leadership Intiative]] |
- | [[File:Washington_ARPA-E_Logo.png|frameless|border|250px|link=http://arpa-e.energy.gov/ProgramsProjects/Electrofuels.aspx|Advanced Research Projects Agency - Energy]]] | + | [[File:Washington_ARPA-E_Logo.png|frameless|border|250px|link=http://arpa-e.energy.gov/ProgramsProjects/Electrofuels.aspx|Advanced Research Projects Agency - Energy]] |
- | + | [[File:Washington_UniversitySeal.gif|frameless|border|250px|link=http://http://www.washington.edu|University of Washington]] | |
+ | [[File:Washington_Anaspec.gif|frameless|border|250px|link=http://www.anaspec.com|Anaspec]] |
Revision as of 22:18, 14 September 2011
Make it or Break it: Diesel Production and Gluten Destruction, the synthetic biology way
Synthetic biology holds great promise to produce vital products and destroy harmful ones. This summer, we harnessed the power of synthetic biology to meet the world’s needs for fuel and medicine. Make It: We constructed a strain of Escherichia coli that produces a variety of alkanes, the main constituents of diesel fuel, by introducing a pair of genes recently shown convert fatty acid synthesis into alkanes. Break It: We engineered an enzyme – to be taken in pill form – that breaks down gluten, a component of staple foods that can causes severe immune responses. The protease Kumamolisin-As was identified and then reengineered using computational techniques, improving its ability to cleave gluten peptides over 10-fold. Finally, to enable next-gen cloning of iGEM parts BioBrick vectors optimized for Gibson assembly were constructed and used to construct the Magnetosome Toolkit: genes for biofabrication of magnetic particles.
Our Sponsors
University of Washington Anaspec