Team:Edinburgh

From 2011.igem.org

(Difference between revisions)
(Cell surface display)
Line 12: Line 12:
-
A biorefinery is a special type of refinery in which biomass, such as plant <span class="hardword" id="cellulose">cellulose</span>, is converted by microorganisms into useful products. Edinburgh's 2011 iGEM project is a feasibility study into the creation of biorefineries and whether they can be improved by arranging for the different enzymes involved to be in close proximity to each other.
+
A biorefinery is a special type of refinery in which biomass, such as plant <span class="hardword" id="cellulose">cellulose</span>, is converted by microorganisms into useful products. Edinburgh's 2011 iGEM project is a feasibility study into the creation of biorefineries using <span class="hardword" id="ec">E. coli</span>, the workhorse of synthetic biology, and whether biorefineries can be improved by arranging for the different enzymes involved to be in close proximity to each other.
==Synergy==
==Synergy==
Line 24: Line 24:
==Cell surface display==
==Cell surface display==
-
The simplest system uses <span class="hardword" id="ec">E. coli</span> bacteria as the scaffold. Each bacterium generates several enzymes and displays them on its outer membrane. If sufficiently high numbers are present on each cell, the synergystic effect should kick in.
+
The simplest system uses ''E. coli'' bacteria as the scaffold. Each bacterium generates several enzymes and displays them on its outer membrane. If sufficiently high numbers are present on each cell, the synergystic effect should kick in.
-
To achieve FIXME
+
To achieve a high expression level, we will attempt to use <span class="hardword" id="inp">ice nucleation protein</span> as a carrier for enzymes;
 +
[http://www.sciencedirect.com/science/article/pii/S016777991000199X Van Bloois ''et al'' (2011)] speak highly of INP, and claim that it can be displayed at a copy number of around 100,000 copies per cell without affecting viability.
==Phage display==
==Phage display==
-
* A more radical proposal involves use <span class="hardword" id="m13">M13</span> <span class="hardword" id="phage">phage</span> as the scaffold, and attaching enzymes by phage-display techniques to the <span class="hardword" id="p8">pVIII</span> coat protein.
+
A more radical proposal involves use <span class="hardword" id="m13">M13</span> <span class="hardword" id="phage">phage</span> as the scaffold, and attaching enzymes by phage-display techniques to the <span class="hardword" id="p8">pVIII</span> coat protein.
==Biorefinery==
==Biorefinery==
Line 36: Line 37:
Our feasibility study looks at more than simply the low-level biology. We also examine the engineering aspects of the creation of biorefineries, and the political and social implications.
Our feasibility study looks at more than simply the low-level biology. We also examine the engineering aspects of the creation of biorefineries, and the political and social implications.
 +
==References==
-
<html><a href="http://www.twitter.com/iGEMEdinburgh"><img src="http://twitter-badges.s3.amazonaws.com/follow_us-b.png" alt="Follow iGEMEdinburgh on Twitter"/></a></html>
+
* Li Q, Yu Z, Shao X, He J, Li L (2009) [http://onlinelibrary.wiley.com/doi/10.1111/j.1574-6968.2009.01724.x/abstract Improved phosphate biosorption by bacterial surface display of phosphate-binding protein utilizing ice nucleation protein]. ''FEMS Microbiology Letters'' '''299'''(1): 44-52 (doi: 10.1111/j.1574-6968.2009.01724.x).
 +
* Van Bloois E, Winter RT, Kolmar H, Fraaije MW (2011) [http://www.sciencedirect.com/science/article/pii/S016777991000199X Decorating microbes: surface display of proteins on ''Escherichia coli'']. ''Trends in Biotechnology'' '''29'''(2): 79-86 (doi: 10.1016/j.tibtech.2010.11.003).
</div> <!-- /main_body-->
</div> <!-- /main_body-->
<html></div> <!-- /mids --></html>
<html></div> <!-- /mids --></html>

Revision as of 13:06, 19 August 2011


Improving biorefineries using synergy
An iGEM feasibility study by Edinburgh 2011


A biorefinery is a special type of refinery in which biomass, such as plant cellulose, is converted by microorganisms into useful products. Edinburgh's 2011 iGEM project is a feasibility study into the creation of biorefineries using E. coli, the workhorse of synthetic biology, and whether biorefineries can be improved by arranging for the different enzymes involved to be in close proximity to each other.

Synergy

In many applications, several enzymes are needed to produce the desired product. And it is often the case that these enzymes work synergistically; meaning their efficiency is increased if they are in close proximity.

Last year, Slovenia found a way to achieve synergy in the periplasm. This year, Edinburgh is investigating whether such synergy can be achieved outside the cell.

We will attempt to create microscopic bioreactors, which we define as scaffolds holding various enzymes which carry out reactions in the extracellular environment. Our hope is that, by combining the activity of multiple enzymes in a small space, high efficiency will be achieved. Two different systems are being investigated.

Cell surface display

The simplest system uses E. coli bacteria as the scaffold. Each bacterium generates several enzymes and displays them on its outer membrane. If sufficiently high numbers are present on each cell, the synergystic effect should kick in.

To achieve a high expression level, we will attempt to use ice nucleation protein as a carrier for enzymes; [http://www.sciencedirect.com/science/article/pii/S016777991000199X Van Bloois et al (2011)] speak highly of INP, and claim that it can be displayed at a copy number of around 100,000 copies per cell without affecting viability.

Phage display

A more radical proposal involves use M13 phage as the scaffold, and attaching enzymes by phage-display techniques to the pVIII coat protein.

Biorefinery

Our feasibility study looks at more than simply the low-level biology. We also examine the engineering aspects of the creation of biorefineries, and the political and social implications.

References

  • Li Q, Yu Z, Shao X, He J, Li L (2009) [http://onlinelibrary.wiley.com/doi/10.1111/j.1574-6968.2009.01724.x/abstract Improved phosphate biosorption by bacterial surface display of phosphate-binding protein utilizing ice nucleation protein]. FEMS Microbiology Letters 299(1): 44-52 (doi: 10.1111/j.1574-6968.2009.01724.x).
  • Van Bloois E, Winter RT, Kolmar H, Fraaije MW (2011) [http://www.sciencedirect.com/science/article/pii/S016777991000199X Decorating microbes: surface display of proteins on Escherichia coli]. Trends in Biotechnology 29(2): 79-86 (doi: 10.1016/j.tibtech.2010.11.003).