Team:Cornell
From 2011.igem.org
Line 20: | Line 20: | ||
</div> | </div> | ||
<p align="center"> | <p align="center"> | ||
- | Cornell’s 2011 iGEM team has designed a new, scalable, and cell-free method to produce complex biomolecules. Current methods for purification from cellular lysate are expensive and time consuming. Biofactory utilizes modified enzymes, capable of being attached to surfaces, in the creation of a modular microfluidic chip for each enzyme. The surface bonding is performed by the well characterized | + | Cornell’s 2011 iGEM team has designed a new, scalable, and cell-free method to produce complex biomolecules. Current methods for purification from cellular lysate are expensive and time consuming. Biofactory utilizes modified enzymes, capable of being attached to surfaces, in the creation of a modular microfluidic chip for each enzyme. The surface bonding is performed by the well-characterized biotin-avidin mechanism. When combined in series, these chips operate as a linear biochemical pathway for continuous flow reactions. Additionally, we plan to engineer <i>E. coli</i> with the mechanism for light-induced apoptosis to easily lyse cultures producing the necessary enzymes. The resulting lysate is flowed through the microfluidic channels, coating them with the desired enzyme. We believe this chemical synthesis method will reduce unwanted side reactions and lower the costs of producing bio-pharmaceuticals in the future.</p></font> |
</td> | </td> | ||
<td | <td |
Revision as of 01:35, 29 September 2011
Abstract
Cornell’s 2011 iGEM team has designed a new, scalable, and cell-free method to produce complex biomolecules. Current methods for purification from cellular lysate are expensive and time consuming. Biofactory utilizes modified enzymes, capable of being attached to surfaces, in the creation of a modular microfluidic chip for each enzyme. The surface bonding is performed by the well-characterized biotin-avidin mechanism. When combined in series, these chips operate as a linear biochemical pathway for continuous flow reactions. Additionally, we plan to engineer E. coli with the mechanism for light-induced apoptosis to easily lyse cultures producing the necessary enzymes. The resulting lysate is flowed through the microfluidic channels, coating them with the desired enzyme. We believe this chemical synthesis method will reduce unwanted side reactions and lower the costs of producing bio-pharmaceuticals in the future. |
|