Team:Alberta

From 2011.igem.org

(Difference between revisions)
Line 106: Line 106:
         <div id=page-title>
         <div id=page-title>
             <span id=page-title-text>
             <span id=page-title-text>
-
                 WELCOME
+
                 MYCODIESEL
             </span>
             </span>
         </div>
         </div>
Line 120: Line 120:
economically viable fuel, biodiesel.</p><br>
economically viable fuel, biodiesel.</p><br>
-
<p>This is not a new idea. Previous research has been largely
+
<p>Previous research has been largely
focused on engineering organisms to metabolize cellulose, a highly
focused on engineering organisms to metabolize cellulose, a highly
inefficient approach with very little yield. Here is where our
inefficient approach with very little yield. Here is where our
-
approach differs. Why engineer a new organism to perform a function
+
approach differs. <b>Why engineer a new organism to perform a function
nature has perfected in another species? Why not just make this
nature has perfected in another species? Why not just make this
-
organism even better?</p><br>
+
organism even better?</b></p><br>
<p>We have selected the filamentous, ascomycete fungus <i>Neurospora
<p>We have selected the filamentous, ascomycete fungus <i>Neurospora
Line 154: Line 154:
         <div id=page-title>
         <div id=page-title>
             <span id=page-title-text>
             <span id=page-title-text>
-
                 LEARN
+
                 LEARN  
             </span>
             </span>
         </div>
         </div>
Line 165: Line 165:
         <div id=page-title>
         <div id=page-title>
             <span id=page-title-text>
             <span id=page-title-text>
-
                 ACHIEVE
+
                 ACHIEVEMENTS
             </span>
             </span>
         </div>
         </div>
-
 
+
<br> Team Alberta was able to successfully achieve the following:
         <ol>
         <ol>
-
             <li>Deck out some <i>N. crassa</i>
+
             <li>Development of a rapid, systematic method to construct genes for Neurospora crassa <i>N. crassa</i>
-
             <li>???</li>
+
             <li>Development and utilization of Neurospora crassa as a suitable synthetic biology chassis</li>
 +
            <li> Creation of x parts for use in future synthetic biology projects </li>
 +
            <li> Outline of the foundations for an economically viable biodiesel </li>
 +
            <li> Design of a self-contained bioreactor apparatus </li>
 +
 
 +
 
             <li>PROFIT!!</li>
             <li>PROFIT!!</li>
         </ol>
         </ol>

Revision as of 22:51, 27 September 2011

  • The Plan
    How do you get fuel from waste? Learn about Team Alberta's progression from by-product biomass to a viable biodiesel.

    Click here to read more...

  • The Procedure
    New organisms require new techniques. Learn how Team Alberta progressed from an idea to a reality and the steps required to get there.

    Click here to read more...

  • The Product
    Biodiesel is a viable fuel. See our fuel in action and learn about Team Alberta's plans to make biodiesel production and usage even easier.

    Click here to read more...

  • The Potential
    Home production and commercial production are viable options for our biodiesel production methods. See Team Alberta's plan to make a small laboratory process into small scale bio-production and large scale.
MYCODIESEL

Team Alberta's aim is to aide in the solution of a global problem, the fuel crisis, by thinking locally. In Alberta, our main industrial practices lay within the oil and gas sector; however, we also have a thriving agricultural and forestry-based industry. The industrial processes associated with these industries produce biomass by-products of little economic value. The aim of our project is to convert these by-products into a useful and economically viable fuel, biodiesel.


Previous research has been largely focused on engineering organisms to metabolize cellulose, a highly inefficient approach with very little yield. Here is where our approach differs. Why engineer a new organism to perform a function nature has perfected in another species? Why not just make this organism even better?


We have selected the filamentous, ascomycete fungus Neurospora crassa, which is a natural cellulose metabolizer, with the aim of creating an organism to efficiently make biodiesel. Our fuel will be made by up-regulating fatty acid synthesis and inhibiting beta-oxidation, effectively causing the over-production of fatty acids within N. crassa. From here we will efficiently esterify the fatty acids into fatty acid methyl esters (FAMEs), producing a viable fuel.

Ingenuity Sustainability Cost Efficiency
LEARN
ACHIEVEMENTS

Team Alberta was able to successfully achieve the following:
  1. Development of a rapid, systematic method to construct genes for Neurospora crassa N. crassa
  2. Development and utilization of Neurospora crassa as a suitable synthetic biology chassis
  3. Creation of x parts for use in future synthetic biology projects
  4. Outline of the foundations for an economically viable biodiesel
  5. Design of a self-contained bioreactor apparatus
  6. PROFIT!!
INTERACT