Team:Cornell
From 2011.igem.org
Line 19: | Line 19: | ||
<div style="text-align: center;"><strong><big><big><big>Abstract</big></big></big></strong> | <div style="text-align: center;"><strong><big><big><big>Abstract</big></big></big></strong> | ||
</div> | </div> | ||
- | <p align="center"> | + | <p align="center" font="Comic Sans MS"> |
- | Cornell’s 2011 iGEM team has designed a new, scalable, and cell-free method to produce complex biomolecules. Current methods for purification from cellular lysate are expensive and time consuming. Cornell iGEM’s Biofactory consists of microfluidic chips coated with enzyme for use in a modular enzyme-mediated biosynthesis pathway. The surface bonding of enzymes is achieved via the well-characterized biotin-avidin mechanism. Enzymes modified with the avidin-tag are bound to the functionalized surface of microfluidic channels, so that when combined in series, these chips operate as a linear biochemical pathway for continuous flow reactions. Additionally, we engineered E. Coli with a genetic mechanism for light-induced apoptosis to easily lyse cultures producing the desired enzymes. The cell lysate is flowed through the microfluidic channels, coating them with the biotinylated enzyme. We believe this method will reduce unwanted side reactions, as well as significantly lowering the costs of producing bio-pharmaceuticals in the future. </p> | + | Cornell’s 2011 iGEM team has designed a new, scalable, and cell-free method to produce complex biomolecules. Current methods for purification from cellular lysate are expensive and time consuming. Cornell iGEM’s Biofactory consists of microfluidic chips coated with enzyme for use in a modular enzyme-mediated biosynthesis pathway. The surface bonding of enzymes is achieved via the well-characterized biotin-avidin mechanism. Enzymes modified with the avidin-tag are bound to the functionalized surface of microfluidic channels, so that when combined in series, these chips operate as a linear biochemical pathway for continuous flow reactions. Additionally, we engineered E. Coli with a genetic mechanism for light-induced apoptosis to easily lyse cultures producing the desired enzymes. The cell lysate is flowed through the microfluidic channels, coating them with the biotinylated enzyme. We believe this method will reduce unwanted side reactions, as well as significantly lowering the costs of producing bio-pharmaceuticals in the future.</p> |
</td> | </td> | ||
<td | <td |
Revision as of 21:37, 25 September 2011
Abstract
Cornell’s 2011 iGEM team has designed a new, scalable, and cell-free method to produce complex biomolecules. Current methods for purification from cellular lysate are expensive and time consuming. Cornell iGEM’s Biofactory consists of microfluidic chips coated with enzyme for use in a modular enzyme-mediated biosynthesis pathway. The surface bonding of enzymes is achieved via the well-characterized biotin-avidin mechanism. Enzymes modified with the avidin-tag are bound to the functionalized surface of microfluidic channels, so that when combined in series, these chips operate as a linear biochemical pathway for continuous flow reactions. Additionally, we engineered E. Coli with a genetic mechanism for light-induced apoptosis to easily lyse cultures producing the desired enzymes. The cell lysate is flowed through the microfluidic channels, coating them with the biotinylated enzyme. We believe this method will reduce unwanted side reactions, as well as significantly lowering the costs of producing bio-pharmaceuticals in the future. |
|