Team:EPF-Lausanne/Our Project/T7 promoter variants/recovery

From 2011.igem.org

(Difference between revisions)
(Experimental Setup)
(Experimental Setup)
Line 18: Line 18:
[[File:iptg_platecount_text.png|390px|left]]
[[File:iptg_platecount_text.png|390px|left]]
-
Once lysis has been induced, we harvest the supernatant every hour, centrifuge it, and sterile filter it in order to remove cell debris. With this purified supernatant, we proceed to two different methods for calculating the amount of DNA that was collected. One method uses the qPCR to amplify a particular sequence of DNA in the desired plasmid (in our case an RFP-containing plasmid). If the qPCR produces large quantities of the DNA, we can conclude that the plasmid was prominently present in the supernatant. The other method involves transforming the supernatant into competent cells and counting the number of resulting colonies. The colony count alongside the qPCR data gives a good understanding of how much DNA could be recovered from the supernatant.
+
Once lysis has been induced, we harvest the supernatant every hour, centrifuge it, and sterile filter it in order to remove cell debris. With this purified supernatant, we proceed to two different methods for calculating the amount of DNA that was collected. One method uses the qPCR to amplify a particular sequence of DNA in the desired plasmid (in our case an RFP-containing plasmid). Depending on the cycle in which the qPCR first detects a PCR product, we can determine the plasmid concentration in the supernatant. The other method involves transforming the supernatant into competent cells and counting the number of resulting colonies. The colony count alongside the qPCR data gives a good understanding of how much DNA could be recovered from the supernatant.
=== Results ===
=== Results ===

Revision as of 16:37, 21 September 2011