Team:Edinburgh/Model Comparison

From 2011.igem.org

(Difference between revisions)
Line 10: Line 10:
*'''MATLAB''' - Within the reactor tasked with degrading cellulose into glucose in the biorefinery, temperature, enzyme concentration, substrate reactivity as well as xylose, cellobiose and glucose inhibition all govern the amount of glucose product. Deterministic modelling using a set of ordinary differential equations highlights the essential kinetic relationship among the enzymes, exo/endo-glucanase and β-glucosidase. By solving these governing equations using the numerical tool MATLAB the level of degradation is qualitatively predicted.
*'''MATLAB''' - Within the reactor tasked with degrading cellulose into glucose in the biorefinery, temperature, enzyme concentration, substrate reactivity as well as xylose, cellobiose and glucose inhibition all govern the amount of glucose product. Deterministic modelling using a set of ordinary differential equations highlights the essential kinetic relationship among the enzymes, exo/endo-glucanase and β-glucosidase. By solving these governing equations using the numerical tool MATLAB the level of degradation is qualitatively predicted.
-
 
-
*'''C model''' - The system was represented using a simple grid, and enzyme movement using <span class="hardword" id="brownian">Brownian motion</span>, with everything implemented by ourselves. It was inspired by cellular-automata systems, though cannot really be considered one.
 
*'''Kappa''' - As an alternative, <span class="hardword" id="stochastic">stochastic</span> models were created using the Kappa language. The system is defined in terms of many discrete agents and rules of their interaction. The Kappa simulator then uses probabilistic equations to simulate the evolution of the system, incorporating an indeterministic element into the system.
*'''Kappa''' - As an alternative, <span class="hardword" id="stochastic">stochastic</span> models were created using the Kappa language. The system is defined in terms of many discrete agents and rules of their interaction. The Kappa simulator then uses probabilistic equations to simulate the evolution of the system, incorporating an indeterministic element into the system.
-
*'''Spatial kappa''' - Because of problems with the Kappa language, we decided to use a spatial extension developed by [https://2010.igem.org/Team:Edinburgh Team Edinburgh 2010]. This adds extra functionality to the language by introducing the concept of space.
+
*'''Spatial kappa''' - Because of problems with the Kappa language, we decided to use a spatial extension developed by the [https://2010.igem.org/Team:Edinburgh Edinburgh 2010] iGEM team. This adds extra functionality to the language by introducing the concept of space.
 +
 
 +
*'''C model''' - Intended more as a demonstration of synergy than an accurate model of the world, the cellulose is represented using a simple two-dimensional grid, on which enzymes move using <span class="hardword" id="brownian">Brownian motion</span>. This is an ''ad hoc'' model made in a general programming language. It was inspired by cellular-automata systems, though cannot really be considered one.
===Steady state===
===Steady state===
-
We found that the equations used for the deterministic modelling only gave sensible answers when the model parameters remained within certain limits. Outside those limits, results could be physically impossible; e.g. producing negative amounts of cellobiose therefore breaking the law of conservation of mass. The deterministic model always had reactants available, i.e cellulose able for every reaction, ensuing it would never reach zero. A 'stress test' was carried out simulating the model over one hundred thousand hours confirming this. Therefore, within the limits of differential equation based modelling, it will unlikely reach a mathematical steady state. An engineer defines steady state when 99% of the initial value of cellulose has been degraded, which was found to occur after 8000 hours. It can be seen from [https://2011.igem.org/Team:Edinburgh/Cellulases_(MATLAB_model) Figure 3], that the 'stress test' revealed neither a mathematical nor engineering steady state will be reached for cellobiose and glucose in the MATLAB model.
+
We found that the equations used for the deterministic modelling only gave sensible answers when the model parameters remained within certain limits. Outside those limits, results could be physically impossible; e.g. producing negative amounts of cellobiose and so breaking the law of conservation of mass. The deterministic model always had reactants available, i.e. cellulose able for every reaction, ensuing it would never reach zero. A 'stress test' was carried out simulating the model over one hundred thousand hours confirming this. Therefore, within the limits of differential equation based modelling, it is unlikely to reach a mathematical steady state. An engineer considers the system to be in steady state when 99% of the initial amount of cellulose has been degraded, which was found to occur after 8000 hours. It can be seen from [https://2011.igem.org/Team:Edinburgh/Cellulases_(MATLAB_model) Figure 3], that the 'stress test' revealed neither the mathematical nor engineering steady state will be reached for cellobiose and glucose in the MATLAB model.
Whereas with the [https://2011.igem.org/Team:Edinburgh/Cellulases_(C_model) C model] and  [https://2011.igem.org/Team:Edinburgh/Cellulases_(Kappa_model) Kappa model]  cellulose, glucose and cellobiose all reach steady state within a finite period of time.. Analysing steady state is important to find out whether a system accumulates excess mass or energy over the time period of interest. Looking at the MATLAB model one asks, is the system inherently thermodynamically unstable or is there a flaw with the model?
Whereas with the [https://2011.igem.org/Team:Edinburgh/Cellulases_(C_model) C model] and  [https://2011.igem.org/Team:Edinburgh/Cellulases_(Kappa_model) Kappa model]  cellulose, glucose and cellobiose all reach steady state within a finite period of time.. Analysing steady state is important to find out whether a system accumulates excess mass or energy over the time period of interest. Looking at the MATLAB model one asks, is the system inherently thermodynamically unstable or is there a flaw with the model?

Revision as of 21:34, 9 September 2011

Model Comparison

Contents

The approaches

  • MATLAB - Within the reactor tasked with degrading cellulose into glucose in the biorefinery, temperature, enzyme concentration, substrate reactivity as well as xylose, cellobiose and glucose inhibition all govern the amount of glucose product. Deterministic modelling using a set of ordinary differential equations highlights the essential kinetic relationship among the enzymes, exo/endo-glucanase and β-glucosidase. By solving these governing equations using the numerical tool MATLAB the level of degradation is qualitatively predicted.
  • Kappa - As an alternative, stochastic models were created using the Kappa language. The system is defined in terms of many discrete agents and rules of their interaction. The Kappa simulator then uses probabilistic equations to simulate the evolution of the system, incorporating an indeterministic element into the system.
  • Spatial kappa - Because of problems with the Kappa language, we decided to use a spatial extension developed by the Edinburgh 2010 iGEM team. This adds extra functionality to the language by introducing the concept of space.
  • C model - Intended more as a demonstration of synergy than an accurate model of the world, the cellulose is represented using a simple two-dimensional grid, on which enzymes move using Brownian motion. This is an ad hoc model made in a general programming language. It was inspired by cellular-automata systems, though cannot really be considered one.

Steady state

We found that the equations used for the deterministic modelling only gave sensible answers when the model parameters remained within certain limits. Outside those limits, results could be physically impossible; e.g. producing negative amounts of cellobiose and so breaking the law of conservation of mass. The deterministic model always had reactants available, i.e. cellulose able for every reaction, ensuing it would never reach zero. A 'stress test' was carried out simulating the model over one hundred thousand hours confirming this. Therefore, within the limits of differential equation based modelling, it is unlikely to reach a mathematical steady state. An engineer considers the system to be in steady state when 99% of the initial amount of cellulose has been degraded, which was found to occur after 8000 hours. It can be seen from Figure 3, that the 'stress test' revealed neither the mathematical nor engineering steady state will be reached for cellobiose and glucose in the MATLAB model.

Whereas with the C model and Kappa model cellulose, glucose and cellobiose all reach steady state within a finite period of time.. Analysing steady state is important to find out whether a system accumulates excess mass or energy over the time period of interest. Looking at the MATLAB model one asks, is the system inherently thermodynamically unstable or is there a flaw with the model?

Flexibility

We define flexibility as the capacity of a model to adopt different initial conditions. For example temperature, amount of substrate, control of inhibition and amount of of each enzymes.

  • Temperature
    • MATLAB - Very flexibile because of the Arrhenius law which models the temperature-dependent reaction rate constant.
    • Kappa - Flexible. There is no empirical relationship incorporated in the model, however by changing diffusion rates between compartments one could (very imprecisely) simulate changes in temperature. There is a possibility that using the Stokes-Einstein equation:
      TODO put the eq. here
      would give more precise results.
    • C - Infelxible. Allan will do more of this. 'Even C is written in C' (Allan Crossman, 16:27 09/09/2011 )


Computational cost

Representing reality