Team:Imperial College London/Project Auxin Modelling

From 2011.igem.org

(Difference between revisions)
 
(196 intermediate revisions not shown)
Line 1: Line 1:
{{:Team:Imperial_College_London/Templates/Header}}
{{:Team:Imperial_College_London/Templates/Header}}
{{:Team:Imperial_College_London/Templates/Auxin}}
{{:Team:Imperial_College_London/Templates/Auxin}}
 +
{{:Team:Imperial_College_London/Templates/Accordion}}
<html>
<html>
<body>
<body>
-
 
<h1>Modelling</h1>
<h1>Modelling</h1>
-
<h2>1. Introduction</h2>
+
<p style="font-size:1.3em;"><a href="#" onClick="ddaccordion.collapseall('technology'); return false">Collapse all</a> | <a href="#" onClick="ddaccordion.expandall('technology'); return false">Expand all</a></p>
-
<p>   Adequate auxin expression from E.coli with engineering auxin synthesis pathway could efficiently promote root growth of plant, however auxin is poisonous to plant if its concentration is too high. Therefore it is important to predict the auxin expression level with certian promoter, and then adjust the promoter strength to ensure the auxin produced by genetic modified E.coli will optimally fasten root growth.</p>
+
-
<p>Auxin will effect root growth in terms of root length and number of braches. In order to study how different concentrations of auxin effect root growth pattern, modelling tools were combined with wet lab results to predict and visulise the root growth in length and branches of arabidopsis.</p>
+
<div class="technology">1. Introduction</div>
-
<br>
+
<div class="thelanguage">
 +
<p>   Adequate production of the plant hormone auxin or indole-3-acetic acid (IAA) from genetically modified (GM) <i>Escherichia coli</i> could efficiently promote plant root growth. However, IAA is toxic to plants if its concentration is too high. Therefore it is important to be able to predict the IAA expression level for a given promoter, and then adjust the promoter strength to ensure the IAA produced by our <i>E.coli</i> will optimally increase root growth.</p>
-
<h2>2. Modelling of auxin synthesis</h2>
+
<p>IAA increases root growth in terms of root length and number of branches. In order to study how different concentrations of IAA affect root growth patterns, modelling tools were combined with wet lab results to predict and visualise <i>Arabidopsis</i> root growth.</p>
-
<br>
+
 
 +
<p style="text-align:right;font-size:1.3em;"><a href="#" class="collapseLink" onClick="ddaccordion.collapseone('technology', 0); return false">Collapse</a></p>
 +
</div>
 +
 
 +
 
 +
<div class="technology">2. Modelling of IAA synthesis</div>
 +
<div class="thelanguage">
<h3>2.1 Objective</h3>
<h3>2.1 Objective</h3>
-
<br>
+
<p> Determine the IAA expression level of a single <i>E. coli</i> cell with IAA promoter strength 4.536 RNA/min/μg substrate DNA, and then predict the number of bacteria to be placed in the seed coat to induce optimal root growth. </p>
-
<p> Determine the auxin expression level of single E.coli with auxin promoter strength 4.536 RNA/min/μg substrate DNA, and then predict the number of bacteria needed to be placed in the seed coat to induce opmtimal root growth </p>
+
<br>
<br>
<h3>2.2 Description</h3>
<h3>2.2 Description</h3>
-
<p>    The genetic auxin pathway involves two genes, IaaM and IaaH, both of which are constitutively expressed. IaaM gene encodes tryptophan-2-monooxygenase (T-2-monase) that catalyzes the conversion of tryptophan (Trp) to indole-3-acetamide (IAM), which is then hydrolyzed to release indole-3-acetic acid (IAA) by the hydrolase iaaH[3]. At the same time the synthesized IAM and IAA will competitively inhibit the enzyme activity of tryptophan-2-monooxygenase, thereby inducing a negative feedback loop on the expression of IAA. The enzymatic reactions involved in the pathway are illustrated in Fig.1 below. </p>
+
<p>    The genetically engineered IAA pathway involves two genes, IaaM and IaaH, both of which are constitutively expressed. The IaaM gene encodes tryptophan-2-monooxygenase (T-2-monase) that catalyses the conversion of tryptophan (Trp) to indole-3-acetamide (IAM), which is then hydrolysed to release indole-3-acetic acid (IAA) by the hydrolase iaaH<sup>[3]</sup>. At the same time, the synthesised IAM and IAA will competitively inhibit the enzyme activity of tryptophan-2-monooxygenase, thereby inducing a negative feedback loop on the expression of IAA. The enzymatic reactions involved in the pathway are illustrated in Figure 1. </p>
Line 27: Line 32:
<div class="imgbox" style="width:720px;margin:0 auto;">
<div class="imgbox" style="width:720px;margin:0 auto;">
<img class="border" style="border-color:#B2B2B2;"src="https://static.igem.org/mediawiki/2011/8/82/Qq.png" />
<img class="border" style="border-color:#B2B2B2;"src="https://static.igem.org/mediawiki/2011/8/82/Qq.png" />
-
<p><i><b>Fig.1[1]: Auxin symtheis pathway</b></i></p>
+
<p><i>Figure 1: IAA synthesis pathway. (Diagram by Imperial College London iGEM team).</i></p>
</div>
</div>
<br>
<br>
-
<p>    In addition, based on research carried out by University of Colorado[4], the tryptophan is also negatively controlled inside of bacteria; therefore the tryptophan synthesis pathway should be integrated into above model. Furthermore, in order to reduce the numbers of parameters as most of the parameters in above graph are not available, the auxin pathway is then simplified to two Michaelis Menten equations, which are then combined with tryptophan pathway and constitutive gene expression for T-2-monase and iaaH. The whole tryptophan auxin pathway model was described in Equation 1[5], and the paramaters are defined in parameter section.  
+
<p>    In addition, based on research carried out by mathematical biology research group from the <a href="http://mathbio.colorado.edu/mediawiki/index.php/MBW:Modelling_the_Tryptophan_Operon" target="_blank">University of Colorado</a><sup>[4]</sup>, tryptophan is also negatively controlled inside bacteria. Therefore the tryptophan synthesis pathway should be integrated into the above model. Furthermore, in order to reduce the numbers of parameters, as most of the parameters in <b>Figure 1</b> are not available to us, the IAA pathway is then simplified into two Michaelis Menten equations, which are combined with the tryptophan pathway and constitutive gene expression for T-2-monase and iaaH. The whole tryptophan IAA pathway model is described in Equation 1<sup>[5]</sup>, and the parameters are defined in the parameters section below.  
-
<p>    The assumptions associated with this model are listed below.
+
<p>    In this model, we made the following assumptions:
-
<p>    (1) We neglect the short transient needed by Trp-T-2-monase (substrate-enzyme(ES) complex), IAM-iaaH(ES complex), IAM- T-2-monase (inhibitor-enzyme(EI) complex) and IAA- T-2-monase (inhibitor-enzyme(EI) complex) and thus to consider these species reach their equilibrium almost instantaneously
+
<p>    (1) We neglect the short time delay due to synthesis of Trp-T-2-monase (substrate-enzyme (ES) complex), IAM-iaaH (ES complex), IAM-T-2-monase (inhibitor-enzyme (EI) complex) and IAA- T-2-monase (inhibitor-enzyme (EI) complex) and assume that these species reach their equilibrium almost instantaneously.
-
<p>    (2) The degradation rate of IAA is extremely slow (7 days according to the experiment) compare to bacteria growth rate, therefore we use bacteria growth rate as IAA degradation rate in the model
+
<p>    (2) The degradation rate of IAA in the dark is extremely low compared to bacterial growth rate. Therefore we used bacterial growth rate as the IAA degradation rate in this model.
-
<p>    (3) From early stage of our modeling of auxin pethway, it is believed that the rate determining species for IAA synthesis is IAM not enzyme iaaH since the production of IAM is inhibited by itself and IAA.   
+
<p>    (3) During the modelling of the IAA pathway, we found that the rate-determining species for IAA synthesis is IAM, not the enzyme iaaH, since the production of IAM is inhibited by itself and IAA.   
<p>  <img src="https://static.igem.org/mediawiki/2011/a/a8/A1.png" /></p>
<p>  <img src="https://static.igem.org/mediawiki/2011/a/a8/A1.png" /></p>
<br>
<br>
-
<h3>2.3 Result and discussion</h3>
+
<h3>2.3 Results and discussion</h3>
-
<br>
+
-
<p>    Fig.2 below represents the standard output of our model. It shows how the concentration of each of the species varies with time. It showing the simulation of the enzymatic reaction for each of the species, with initial concentration of O<sub>F</sub> = 1.54×10<sup>-4</sup> µM, M<sub>F</sub> = 3.78×10<sup>-4</sup> µM , E = 0.378µM , Trp = 4.1µM and all others = 0 [4]. </p>
+
<p>    <b>Fig.2</b> below represents the output of our model.  
 +
<p>1. How the concentration of each protein species varies with time.  
 +
<p>2. The simulation of the enzymatic reaction for each of the species, with initial concentrations of O<sub>F</sub> = 1.54×10<sup>-4</sup> µM, M<sub>F</sub> = 3.78×10<sup>-4</sup> µM , E = 0.378 µM, Trp = 4.1 µM and all others = 0 <sup>[4]</sup>.
 +
<p>Also, <b>Fig.2</b> shows that the IAA expression level is 72.35 µM, which means that each bacterium produces 7.24×10<sup>-14</sup> µmole per bacteria at steady state with bacterial volume equals to 10<sup>-15</sup> dm<sup>3</sup>. From wet <a href="https://2011.igem.org/Team:Imperial_College_London/Project_Auxin_Testing">lab experiments</a> we know that the optimal concentration of IAA to promote root growth is 0.1 nM, and the volume of an <i>Arabidopsis</i> seed coat approximately equals 3.6×10<sup>-9</sup> m<sup>3</sup> <sup>[7]</sup>. Therefore the number of bacteria required to be present in seed coat to maximally increase root growth of roots is 4.97 x 10<sup>6</sup>. </p>
 +
<p>The details of the calculation are listed below:
 +
<p>1. Number of moles produced by a single bacterium is 72.35 µm * 10<sup>-18</sup> m<sup>3</sup> (7.235 * 10<sup>-17</sup>µmol).
 +
<p>2. The number of moles of IAA need to be in one seed coat is 3.6 * 10<sup>-9</sup> m<sup>3</sup> * 0.1 nmol.
 +
<p>3. The number of bacteria need to be place in one seed coat is (3.6 * 10<sup>-10</sup> µmol) / (7.235 * 10<sup>-17</sup>) = 4.97 * 10<sup>6</sup>.
 +
<br>
<br>
<br>
<div class="imgbox" style="width:820px;margin:0 auto;">
<div class="imgbox" style="width:820px;margin:0 auto;">
<img class="border" style="border-color:#B2B2B2;"src="https://static.igem.org/mediawiki/2011/6/6b/A3.png" width="800px" />
<img class="border" style="border-color:#B2B2B2;"src="https://static.igem.org/mediawiki/2011/6/6b/A3.png" width="800px" />
-
<p><i><b>Fig.2(a):The evolution of IAM vs. time. Fig.2(b): The evolution of IAA.vs.time </b>The graph Fig.2(b))shows IAA concentration is 72.35µM, therefore each bacteria produces 7.24×10<sup>-14</sup> µM at steady state with bacteria volume equals to 10<sup>-15</sup> dm<sup>3</sup>.From wet lab experiment we know that the optimal concentration of IAA to promote root growth 0.1nM, and the volume of arabidopsis seed with seed coating approximately equals to 4.2×10<sup>-9</sup> m<sup>3</sup>[7]. Therefore the number of bacteria required to maximally fasten root growth of bacteria is 5, the value varies due to the variation of seed size of different of plant.</i></p>
+
<p><i>Figure 2 (a): The evolution of IAM vs. time. Figure 2 (b): The evolution of IAA vs. time. </i> </p>
</div>
</div>
-
 
<br>
<br>
-
<h2>3.Auxin uptake and root growth </h2>
+
<p>In conclusion, we obtained the concentration of IAA produced by the IAA DNA construct (72.25 μM). From this value, we calculated the number of bacteria that would need to enter the root under ideal growth conditions and ignoring death and division of bacteria, which was found to be 4.97x10<sup>6</sup>  bacteria for <i>Arabidopsis</i>. This value varies due to the variation in seed size of different of plants. Since bacterial cells can be lost from the plant and not all the bacteria from the seed coat will enter the plant, the number of bacteria required in the seed coat will be higher than this. Furthermore, the modelling of root growth in the next part helped us visualise the root growth. </p>
-
<br>
+
<p style="text-align:right;font-size:1.3em"><a href="#" class="collapseLink"  onClick="ddaccordion.collapseone('technology', 1); return false"><b>Collapse</b></a></p>
 +
</div>
 +
 
 +
 
 +
<div class="technology">3. IAA uptake and root growth</div>
 +
 
 +
<div class="thelanguage">
<h3>3.1 Objective</h3>
<h3>3.1 Objective</h3>
-
<p> 1.Create a graphic program to demonstrate the growing process of the arabidopsis root system, based on the principles of Lindenmayer system and plant physiology.</p>
+
<p> 1. Create a graphic program to demonstrate the growing process of the <i>Arabidopsis</i> root system, based on the principles of Lindenmayer system and plant physiology.</p>
-
<p>2. Use Matlab data fitting tools to develope relations between auxin concentration and growth rate and number of branches</p>
+
<p>2. Use Matlab data fitting tools to develop relations between IAA concentration and growth rate and number of branches. </p>
<br>
<br>
<h3>3.2 Description</h3>
<h3>3.2 Description</h3>
 +
<p> We used computational tools to visulise the root growth phenomena (primary rootlength, branching, root density, etc) in different enviromental conditions, and specifically considered root order and root length. Root order describes the branching &ldquo;generation&rdquo; of a root system; a root without branching is defined as a zero-order root. Root growth depends on environmental factors, such as gravitation and soil heterogeneities.<p>   
<br>
<br>
-
<p> In order to using computational tools to visulise the root growth phenomena (primary rootlength, branching, root density, etc) in different enviromental conditions, root order and root length are considered. Root order describes the branching &ldquo;generation&rdquo; of a root system, a root  without branching is defined as a zero-order root. And root growth depends on the environmental factors, such as gravitation, soil heterogeneities, etc.<p>   
+
<p>   <b>3.2.1 Tropisms</b>
-
<br>
+
<p>    A root system starts with a single root tip of a zero-order root. Then the root grows away from the plant stem in a conical way<sup>[10]</sup>.
-
<p>    A root system starts with a single root tip of a zero-order root. Then the root grows away from the plant stem in a conical way.[10]
+
<p>    Root growth depends on environmental factors, such as gravitation and soil heterogeneities. Therefore, two more variables are defined to describe the plant adaptation<sup>[10]</sup>:
-
<p>    <img src="https://static.igem.org/mediawiki/2011/0/02/ICL_Auxin2.png" alt="" width="175" height="131" />
+
<p>    <b>&sigma;:-</b>  
-
      <img src="https://static.igem.org/mediawiki/2011/7/76/ICL_Auxin3.png" alt="" width="200" height="122" />
+
<p>    - how strong the roots direction changes per 1 cm growth
-
<p>    <b>Fig.1  a conical approximation of the root system </b>
+
<p>    - a larger value indicates a more deflected root and a more twisted root system
-
<br>
+
-
<br>
+
-
<p>    <b>3.2.3 Tropisms</b>
+
-
<p>    Root growth depends on the environmental factors, such as gravitation, soil heterogeneities, etc. Therefore, two more variables are defined to describe the plant adaptation:[10]
+
-
<p>    <b>&alpha;:-</b>  
+
-
<p>    how strong the roots direction changes per 1cm growth ?
+
-
<p>    larger value indicates a more deflected root and a more twisted root system
+
<p>    <b>N:-</b>
<p>    <b>N:-</b>
-
<p>    the number of trials for the roots to find the optimal angles &alpha; and &beta; for the rotation  
+
<p>    - the number of trials for the roots to find the optimal angles &alpha; and &beta; for the rotation  
-
<p>    for the downward movement
+
<p>    of the downward movement
-
<p>    N can be any real number, if N = 1.5, if means that N can be either 1 or 2.</p>
+
<p>    - N can be any real number. If N = 1.5, if means that N can be either 1 or 2.</p>
-
<p>    <img src="https://static.igem.org/mediawiki/2011/thumb/3/31/Auxin4_tropism.png/800px-Auxin4_tropism.png" />
+
-
<p>    <b>Fig.2  the difference of the root systems with different values of N and σ</b>
+
<br>
<br>
 +
<div class="imgbox" style="width:820px;margin:0 auto;">
 +
<img class="border" style="border-color:#B2B2B2; "src="https://static.igem.org/mediawiki/2011/thumb/e/e2/Aa33.png/800px-Aa33.png" />
 +
<p><i>Figure 3: Differences between root systems with different values of N and σ. (Modelling based on Daniel Leitner et al from BOKU, and codes were modified by Imperial College London iGEM team 2011).</b></i></p>
 +
</div>
<br>
<br>
-
<p>    <b>3.2.4 Lindenmayer system and root growth modeling</b>
+
<p>    <b>3.2.2 Lindenmayer system and root growth modelling</b>
-
<p>    An L-system is a parallel rewriting system, namely a variant of a formal grammar, most famously used to model the growth processes of plant development, but also able to model the morphology of a variety of organisms, due to the two main properties: recursive nature and self-similarity.[11]
+
<p>    An L-system is a parallel rewriting system, namely a variant of a formal grammar, most famously used to model the growth processes of plant development, but also able to model the morphology of a variety of organisms, due to the two main properties: recursiveness and self-similarity<sup>[11]</sup>. Plant models and natural-looking organic forms are easy to define, as by increasing the recursion level the form slowly 'grows' and becomes more complex.
-
<p>   Plant models and natural-looking organic forms are easy to define, as by increasing the recursion level the form slowly 'grows' and becomes more complex.
+
<p>    Using L-systems for generating graphical images requires that the symbols in the model refer to elements of a drawing on the computer screen. It interprets each constant in an L-system model as a turtle command.
-
<p>    L-systems are now commonly known as <em>parametric</em> L systems, defined as a tuple.
+
-
<p>  <img src="https://static.igem.org/mediawiki/2011/1/10/Aux1.png" />
+
-
<p>    A production consists of two strings, the <em>predecessor</em> and the <em>successor</em>. <br />
+
-
<p>    For any symbol A in V which does not appear on the  left hand side of a production in P,the identity production A → A is assumed. These symbols are called <em>constants</em> or <em>terminals</em>. </p>
+
-
<p>    An L-system is <em>context-free</em> if each production rule refers only to an individual symbol and not to its neighbors. Context-free L-systems are thus specified by either a prefix grammar, or a regular grammar.  
+
-
<p>    Using L-systems for generating graphical images requires that the symbols in the model refer to elements of a drawing on the computer screen. It interprets each constant in an L-system model as a <b>turtle command</b>.
+
<br>
<br>
<br>
<br>
-
<p>  <b>3.2.5 Root Growth</b>
+
<p>  <b>3.2.3 Root growth</b>
-
<p>    The modelling of auxin uptake will give prediction of the root system development in the following ways:-
+
<p>    The modelling of IAA uptake can give predictive answers to questions such as these:
<p>    <i>"What is the primary root growth rate?"</i>
<p>    <i>"What is the primary root growth rate?"</i>
<p>    <i>"What does the root system look like after a certain period of time?"</i>
<p>    <i>"What does the root system look like after a certain period of time?"</i>
-
<p>    <i>"How does arabidopsis respond to different auxin concentration?"</i>
+
<p>    <i>"How does <i>Arabidopsis</i> respond to different IAA concentrations?"</i>
-
<p>    ... ...
+
<br>
<br>
-
<p>  We modified an MATLAB program developed by Daniel Leither[6] research group demonstrate the 3D root system based on the principles of Lindenmayer system(turtle commands) and the root growth modelling toolbox developed by <i>Daniel Leitner et al from BOKU(Universität für Bodenkultur Wien, University of Natural Resources and Life Sciences, Vienna)</i>.[12]
+
<p>  We modified a MATLAB program developed by Daniel Leitner's research group<sup>[6]</sup> to demonstrate the 3D root system based on the principles of Lindenmayer system (turtle commands) and the root growth modelling toolbox developed by Daniel Leitner et al from BOKU (Universität für Bodenkultur Wien, University of Natural Resources and Life Sciences, Vienna)</i><sup>[12]</sup>.
<br>
<br>
<br>
<br>
-
<p>    <b>3.2.6 Data fitting</b>
+
<p>    <b>3.2.4 Data fitting</b>
-
<p>    Apart from the growth rate parameters we took from the literature, we analyzed the raw data from wetlab to give more accurate and suitable prameters for our own project.
+
 
-
<p>   When the arabidopsis samples are planted, we record the root length and number of branches every three day from day 0 to day 9. Then, root length, daily root growth rate and number of branches are plotted against time and auxin concentration.
+
<p>    We took growth rate parameters from the literature and analysed the raw data from our wet lab to give more accurate and suitable parameters for our project. <i>Arabidopsis</i> plants were planted and root length and number of branches recorded every two days from day 0 to day 9. Root length, daily root growth rate and number of branches were plotted against time and IAA concentration.
<br>
<br>
<br>
<br>
-
<h3>3.3 Result and Discussion</h3>
+
<h3>3.3 Results and discussion</h3>
<br>
<br>
-
<p>    The values from literature gives the relationship between external auxin concentration and elongation of the roots is 5*10<sup>-5 </sup>mol/L &rarr; 200 &micro;m elongation in 30 mins. The modelling parameter of growth speed is therefore 9.6*10<sup>-3</sup> m/day.[9]
+
<p>    <b>3.3.1 Visualisation of a root system</b>
 +
<p>    The values from the literature give the relationship between external IAA concentration and elongation of the roots as 5*10<sup>-5</sup> mol/L &rarr; 200 &micro;m elongation in 30 min. The modelling parameter of growth speed is therefore 9.6*10<sup>-3</sup> m/day<sup>[9]</sup>.
<br>
<br>
-
<p>    By observing the real roots grow from the plant, the demonstration is modified to give a more reliable and accurate prediction of the root growth. Arabidopsis has a primary root with zeroth order and it is thicker than the branches. Arabidopsis normally grows to the depth of 20~30cm inside the soil and branches once only. The 3D picture shown below predicts the root growth with different elongation rate(with auxin = 0.96cm/day; without auxin = 0.46cm/day[10]). They can be compared with the photo of real root system.
+
<p>    We observed real root growth patterns and modified our simulation to give a more reliable and accurate prediction of root growth. <i>Arabidopsis</i> has a primary root with zeroth order and it is thicker than the branches. <i>Arabidopsis</i> normally grows to the depth of 20-30 cm inside the soil and branches only once. The 3D picture shown below predicts the root growth with different elongation rate (with IAA = 0.96 cm/day; without IAA = 0.46 cm/day<sup>[10]</sup>). They can be compared with the photo of a real root system.
<br>
<br>
-
<p>  <img src="https://static.igem.org/mediawiki/2011/thumb/0/0c/Ttt.png/776px-Ttt.png" /><br />
 
-
<p>    <b>Fig.4  visalisation of the arabidopsis root system</b>
 
<br>
<br>
 +
<div class="imgbox" style="width:820px;margin:0 auto;">
 +
<img class="border" style="border-color:#B2B2B2;"src="https://static.igem.org/mediawiki/2011/thumb/9/9f/Aa222.png/706px-Aa222.png"  />
 +
 +
<p><i>Figure 4: 3D visalisation of the arabidopsis root system. The graph Figure 4(a)(b) shows the demonstration of the </i>Arabidopsis<i> root system in different IAA concentration conditions with a growth time of 20 days as our simulation results. Figure 4(c)(d) are the actual photos of real </i>Arabidopsis<i> plants taken from the literature and our wet lab. (Modelling based on Daniel Leitner et al from BOKU, and codes were modified by Imperial College London iGEM team 2011).</i></p>
 +
</div>
<br>
<br>
-
<p>   <object style="height: 390px; width: 640px"><param name="movie" value="http://www.youtube.com/v/rUsxWr9_cvg?version=3"><param name="allowFullScreen" value="true"><param name="allowScriptAccess" value="always"><embed src="http://www.youtube.com/v/rUsxWr9_cvg?version=3" type="application/x-shockwave-flash" allowfullscreen="true" allowScriptAccess="always" width="640" height="390"></object>
+
<p> <p style="text-align:center;">      <object style="height: 390px; width: 640px"><param name="movie" value="http://www.youtube.com/v/rUsxWr9_cvg?version=3"><param name="allowFullScreen" value="true"><param name="allowScriptAccess" value="always"><embed src="http://www.youtube.com/v/rUsxWr9_cvg?version=3" type="application/x-shockwave-flash" allowfullscreen="true" allowScriptAccess="always" width="640" height="390"></object>
<br>
<br>
-
<p>    <object style="height: 390px; width: 640px"><param name="movie" value="http://www.youtube.com/v/K4CpI5fpZas?version=3"><param name="allowFullScreen" value="true"><param name="allowScriptAccess" value="always"><embed src="http://www.youtube.com/v/K4CpI5fpZas?version=3" type="application/x-shockwave-flash" allowfullscreen="true" allowScriptAccess="always" width="640" height="390"></object><br>
+
<p>    <p style="text-align:center;">    <object style="height: 390px; width: 640px"><param name="movie" value="http://www.youtube.com/v/kH05rgCrP1c?version=3"><param name="allowFullScreen" value="true"><param name="allowScriptAccess" value="always"><embed src="http://www.youtube.com/v/kH05rgCrP1c?version=3" type="application/x-shockwave-flash" allowfullscreen="true" allowScriptAccess="always" width="640" height="390"></object><br>
<br>
<br>
-
<p>   The root has a growth rate of 0.96cm/day with the external auxin concentration 5x10-5mol/L, however, this data is selected from literature. To get an accurate growth rate which is particularly fitting our project, we decided to do data fitting analysis to the arabidopsis we plant.
+
<div class="imgbox" style="width:850px;margin:0 auto;">
 +
<img class="border" style="border-color:#B2B2B2;"src="https://static.igem.org/mediawiki/2011/a/a9/Aa55.png" width=850px height=1020px  />
 +
<p><i>Figure 5: The graphic analysis of the 3D root system. By taking cross and longitudinal sections of the root system at different positions, Figure 5(a) is the root length distribution (by fraction) against the root depth. Figure 5(c) is the surface area distribution map. This graph will give guidance for placing GM </i>E. coli<i> inside the soil. </i>E. coli<i> should be placed at the depth with the maximal root surface area (6 cm) inside the soil for the maximal uptake efficiency. (Modelling based on Daniel Leitner et al from BOKU, and codes were modified by Imperial College London iGEM team 2011).</i></p>
 +
</div>
 +
 
 +
<div class="newouterbox">
 +
<h4 class="newtext">NEW SINCE EUROPE JAMBOREE</h4>
 +
<div class="newinnerbox">
 +
 
 +
<p>    <b>3.3.2 Data fitting</b>
 +
<p>  We designed an experiment to support the data fitting and tested it before the European Regional Jamboree. The results are integrated into Section 2. The effect of IAA on <i>Arabidopsis</i> roots. Click <a href = "https://2011.igem.org/Team:Imperial_College_London/Project_Auxin_Testing" >here</a> to see the details of the first data-fitting experiment.
 +
 
 +
<p>  After the European Regional Jamboree, we improved the protocol to include the following considerations and improvements:-
 +
<p>  a) The degradation of IAA:
 +
<p>    The wet lab results shows that the IAA concentration in phytogel media is negligible after 9 days, the degradation of IAA is an important factor when root growth is modelled. The IAA concentration can be calculated everyday using the equation: <b>remaining IAA (%) = 95.75 - 2.9x + 0.05x<sup>2</sup></b>, where x is the number of days after the auxin has been added.<sup>[14]</sup>
 +
<p>  b) The number of samples:
 +
<p>    We prepared 20 replica for each auxin concentration to reduce the error.
 +
<p>  c) The measurements technique:
 +
<p>    Since the uptake rate and the IAA degradation rate changes rapidly, we measured <i>Arabidopsis</i> roots in phytogel everyday instead of once every three days. Therefore we have correlated the daily growth rate with IAA concentration.  
<br>
<br>
<br>
<br>
-
<p>   The data fitting plots are analysed to give an approximation of the relationship between auxin concentration and root growth. The following graph gives an example of root length against time. [8]
+
<div class="imgbox" style="width:800px;margin:0 auto;">
-
<p>  <img src="https://static.igem.org/mediawiki/2011/7/7e/Plot1.PNG" alt="" width="506" height="582" /><br />
+
<img class="border" style="border-color:#B2B2B2;"src="https://static.igem.org/mediawiki/2011/thumb/b/bc/Plot.png/800px-Plot.png" />
-
<p>   <b>Fig.5  root growth speed decays against time</b>
+
<p><i>Figure 6: Daily growth rate of</i> Arabidopsis <i>against the logarithms of the additional IAA concentration. The relation can be described by the Gaussian equation.</i></p>
 +
</div> 
<br>
<br>
 +
<p>Then, the mathematic model we got from the data fitting experiments was integrated with our 3D root simulation system. This produced a MATLAB toolbox with IAA concentration as the input and the 3D root model as the output. We defined a valid IAA concentration range from 10<sup>-3</sup> mol/L (1 mM) to 10<sup>-14</sup> mol/L (0.01 pM) for the simulation based on the following reasons:
 +
<p>  a) When the IAA concentration is higher than 10<sup>-3</sup> mol/L (1 mM), the <i>Arabidopsis</i> will be killed.
 +
<p>b) When the IAA concentration is lower than 10<sup>-14</sup> mol/L (0.01 pM), the <i>Arabidopsis</i> will not be affected since the IAA produced by <i>Arabidopsis</i> itself is much more. Also, it is reasonable to define a limitation of IAA dilution to keep the percentage error low.
 +
<p>c) The Gaussian equation can only describe the relation between the growth rate and the IAA concentration within this range accurately.
 +
<p>Our wetlab results shows two different optimal IAA concentrations for the <i>Arabidopsis</i> root growth, 0.1nM in liquid media and 1pM in phytogel. The data fitting experiment is done inside phytogel.
<br>
<br>
-
<p>    <img src="https://static.igem.org/mediawiki/2011/thumb/0/04/Length_vs_day.conc.png/800px-Length_vs_day.conc.png" /><br />
 
-
<p>    <b>Fig.6  primary root length(mm) VS time(day) and external auxin concentration(mol/L)</b>
 
<br>
<br>
 +
<div class="imgbox" style="width:800px;margin:0 auto;">
 +
<img class="border" style="border-color:#B2B2B2;"src="https://static.igem.org/mediawiki/igem.org/b/b5/Datatt.png" width=780 height=820 />
 +
 +
<p><i>Figure 7: The results of the simulation with different input.</i></p>
 +
</div> 
<br>
<br>
-
<p>    <img src="https://static.igem.org/mediawiki/2011/thumb/1/15/Rate_vs_day.png/800px-Rate_vs_day.png" /><br />
+
 
-
<p>    <b>Fig.7  primary root growth rate(mm/day) VS root growth time(day)</b>
+
-
<br>
+
-
<br>
+
-
<p>    <img src="https://static.igem.org/mediawiki/2011/thumb/2/24/Branch_vs_con.png/800px-Branch_vs_con.png" /><br />
+
-
<p>    <b>Fig.8  number of lateral branch VS external auxin (log)concentration</b>
+
<br>
<br>
-
<br>
+
<p>The video below shows how the MATLAB toolbox predicting the root system after 25 days given a certain IAA concentration.The results simulated are supported by our wetlab experiments.(Please select the 720HD version when you play the video to see the details clearly.)
-
<p>   From Fig.6 and Fig.8, the following conclusion can be make:-
+
 
-
<p>   the optimal concentration for primary root growth = 1pM, at this concentration,
+
<p><object style="height: 531.7px; width: 850px;"><param name="movie" value="http://www.youtube.com/v/ybVldvc2HZE?version=3&feature=player_detailpage"><param name="allowFullScreen" value="true"><param name="allowScriptAccess" value="always"><embed src="http://www.youtube.com/v/ybVldvc2HZE?version=3&feature=player_detailpage" type="application/x-shockwave-flash" allowfullscreen="true" allowScriptAccess="always" width="850" height="531.7"></object></p>
-
<p>   the arabidopsis root reached the  maximal depth into soil
+
 
-
<p>   the optimal concentration for lateral root branching = 1uM-10nM,
+
</div></div>
-
<p>   at this concentration, the arabidopsis root gained the most lateral branches
+
 
-
<br>
+
<p style="text-align:right;font-size:1.3em;"><a href="#" class="collapseLink" onClick="ddaccordion.collapseone('technology', 2); return false">Collapse</a></p>
-
<p>   We used the data fitting toolbox of Matlab to obtain <b>Fig.7 primary root growth rate(mm/day) VS root growth time(day)</b>, the relationship between the growth rate and the auxin concentration can be approximated by Gaussian equation. The abnormality of the 0.1nM curve is due to the two contaminated samples which stopped growing at 7mm after Day 5. Fig.7 is consistent with the prediction of the decay of the root growth speed given by Fig.7.
+
</div>
-
<br>
+
 
-
<br>
+
<div class="technology">4. Parameters</div>
-
<h2>4. Parameters</h2>
+
<div class="thelanguage">
-
<p>    <img src="https://static.igem.org/mediawiki/2011/b/b5/Auxparam.png" />
+
<p>    <img src="https://static.igem.org/mediawiki/2011/b/bf/Auxparameter.png" />
-
<p>    <b>   *  Link to the Registry Page:</b>  
+
-
<p>   [http://partsregistry.org/Main_Page]
+
<p>    <a href="http://partsregistry.org/wiki/index.php?title=Part:BBa_K515010">Link to the Registry Page for details of Pveg2 promoter</a> </p>
-
<br>
+
<p style="text-align:right;font-size:1.3em;"><a href="#" class="collapseLink"  onClick="ddaccordion.collapseone('technology', 3); return false">Collapse</a></p>
-
<br>
+
</div>
-
<h2>5. Matlab code </h2>
+
 
-
<br>
+
<div class="technology">5. Matlab code</div>
-
<br>
+
<div class="thelanguage">
-
<h2>6. Reference</h2>
+
<p><a href="https://static.igem.org/mediawiki/2011/3/36/Auxin_Xpress.zip"><img src="https://static.igem.org/mediawiki/2011/8/8c/ICL_DownloadIcon.png" width="180px" /></a></p>
-
<p>  [1] Hutcheson, S.W., Kosuge, T., (1985), Regulation of 3-Indoleacetic Acid Production in Pseudomonas syringae pv savastanoi: PURIFICATION AND PROPERTIES OF TRYPTOPHAN 2-MONOOXYGENASE, ‘The Journal of Biological Chemistry’, 260(10), pp.6281-6287
+
 
-
<p>  [2] Saepen,S., Vanderleyden, J., Remans, R., (2007), Indole-3-acetic acid in microbial and microorganism-plant signaling, ‘FEMS Microbiology Reviews’, 31(4), pp.425-448
+
 
-
<p>  [3] Y.Cheng, C.Dai, Y.Zhao (2006), Auxin biosynthesis by the YUCCA flavin monooxygenases controls the formation of floral organs and vascular tissues in arabidopsis’ Genes&Dev.2006.20;1790-199. Doi: 10.1101/gad.1415106
+
<p style="text-align:right;font-size:1.3em;"><a href="#" class="collapseLink"  onClick="ddaccordion.collapseone('technology', 4); return false">Collapse</a></p>
-
<p>  [4]http://mathbio.colorado.edu/mediawiki/index.php/MBW:Modelling_the_Tryptophan_Operon
+
</div>
-
<p>  [5] Santillan, M., Mackey, M.C., (2001), Dynamic regulation of the tryptophan operon: A modeling study and comparison with experimental data, ‘PNAS’, 98(4), pp.1364-1369
+
 
 +
<div class="technology">6. References</div>
 +
<div class="thelanguage">
 +
<p>  [1] Hutcheson SW, Kosuge T (1985) Regulation of 3-indole acetic acid production in <i>Pseudomonas syringae pv savastanoi</i>: Purification and properties of tryptophan 2-monooxygenase. <i>The Journal of Biological Chemistry</i> <b>260(10):</b> 6281-6287.
 +
<p>  [2] Saepen S, Vanderleyden J, Remans R (2007) Indole-3-acetic acid in microbial and microorganism-plant signaling. <i>FEMS Microbiology Reviews</i> <b>31(4)</b> 425-448.
 +
<p>  [3] Cheng Y, Dai C, Zhao Y (2006), Auxin biosynthesis by the YUCCA flavin monooxygenases controls the formation of floral organs and vascular tissues in <i>Arabidopsis</i>. <i>Genes & Dev</i> 1790-199. Doi: 10.1101/gad.1415106
 +
<p>  [4] http://mathbio.colorado.edu/mediawiki/index.php/MBW:Modelling_the_Tryptophan_Operon
 +
<p>  [5] Santillan M, Mackey MC (2001) Dynamic regulation of the tryptophan operon: a modeling study and comparison with experimental data. <i>PNAS</i> <b>98(4)</b> 1364-1369.
<p>  [6] http://www.ccdb.ualberta.ca/CCDB/cgi-bin/STAT_NEW.cgi
<p>  [6] http://www.ccdb.ualberta.ca/CCDB/cgi-bin/STAT_NEW.cgi
<p>  [7] http://www.seedgenes.org/Tutorial.html
<p>  [7] http://www.seedgenes.org/Tutorial.html
-
<p>  [8] Leitner, D., Klepsch, S., Bodner, G., Schnepf, A., (2009), A dynamic root system growth model based on L-Systems: Tropisms and coupling to nutrient uptake from soil, ‘Plant and Soil’, 332(1-2),pp.177-192
+
<p>  [8] Leitner D, Klepsch S, Bodner G, Schnepf A (2009) A dynamic root system growth model based on L-Systems: tropisms and coupling to nutrient uptake from soil. <i>Plant and Soil</i> <b>332(1-2):</b> 177-192.
-
<p>  [9] Rayle, D.L., Evans, M.L., Hertel, L., (1970), Action of Auxin on Cell Elongation, ’ Proceedings of the National Academy of Sciecnce’, 65(1), pp.184-191
+
<p>  [9] Rayle DL, Evans ML, Hertel L (1970) Action of auxin on cell elongation. <i>Proc Nat Acd Sci USA</i> <b>65(1):</b> 184-191.
-
<p>  [10] Beemster, G.T.S., Baskin, T.I., (1998) Analysis of Cell Division and Elongation Underlying the Developmental Acceleration of Root Growth in Arabidopsis thaliana, ‘Plant Physiology’, 116(4), pp.1515-1526
+
<p>  [10] Beemster GTS, Baskin TI (1998) Analysis of cell division and elongation underlying the developmental acceleration of root growth in <i>Arabidopsis thaliana</i>. <i>Plant Physiology</i> <b>116(4):</b> 1515-1526.
-
<p>  [11] HU, H., CAO, X., LIN ,B., (2003), Three Dimensional Lindenmayer System, ‘The Journal of Engineering Graphics’, 2003-03
+
<p>  [11] Hu H, Cao X, Lin B (2003) Three dimensional Lindenmayer system. <i>The Journal of Engineering Graphics</i>.
-
<p>  [12] Leitner, D., Schnepf, A., Klepsch, S., Roose, T., (2009), Comparison of nutrient uptake between 3-dimensional simulation and an averaged root system model, ‘Plant Biosystems’, 144(2), pp.443-447
+
<p>  [12] Leitner D, Schnepf A, Klepsch S, Roose T (2009) Comparison of nutrient uptake between 3-dimensional simulation and an averaged root system model. <i>Plant Biosystems</i> <b>144(2):</b> 443-447.
-
<p>  [13]Brenda: The Comprehensive Enzyme Information System (http://www.brenda-enzymes.org/)
+
<p>  [13] Brenda: The Comprehensive Enzyme Information System (http://www.brenda-enzymes.org/).
-
<p>  [14] http://www.jbs.org/content/246/22/6956.full.pdf
+
<p>  [14] James D, Stephen K,  Robert M (1986) The Effect of Salt Concentration on Auxin Stability in Culture
 +
Media. <i>Plant Physiology</i> <b>81:</b> 934-936.
 +
<p style="text-align:right;font-size:1.3em;"><a href="#" class="collapseLink"  onClick="ddaccordion.collapseone('technology', 5); return false">Collapse</a></p>
 +
</div>
 +
 
 +
<h2>
 +
<a href="https://2011.igem.org/Team:Imperial_College_London/Project_Auxin_Design" style="text-decoration:none;color:#728F1D;float:left;">
 +
<img src="https://static.igem.org/mediawiki/2011/8/8e/ICL_PreviousBtn.png" width="40px" style="float;left;"/>
 +
M2: Design
 +
</a>
 +
<a href="https://2011.igem.org/Team:Imperial_College_London/Project_Auxin_Assembly" style="text-decoration:none;color:#728F1D;float:right;">
 +
M2: Assembly
 +
<img src="https://static.igem.org/mediawiki/2011/9/90/ICL_NextBtn.png" width="40px" style="float;right;"/>
 +
</a>
 +
</h2>
 +
<br/>
 +
<br/>
</body>
</body>
</html>
</html>

Latest revision as of 03:33, 29 October 2011




Module 2: Auxin Xpress

Auxin, or Indole 3-acetic acid (IAA), is a plant growth hormone which is produced by several soil bacteria. We have taken the genes encoding the IAA-producing pathway from Pseudomonas savastanoi and expressed them in Escherichia coli. Following chemotaxis towards the roots and uptake by the Phyto Route module, IAA expression will promote root growth with the aim of improving soil stability.




Modelling

Collapse all | Expand all

1. Introduction

Adequate production of the plant hormone auxin or indole-3-acetic acid (IAA) from genetically modified (GM) Escherichia coli could efficiently promote plant root growth. However, IAA is toxic to plants if its concentration is too high. Therefore it is important to be able to predict the IAA expression level for a given promoter, and then adjust the promoter strength to ensure the IAA produced by our E.coli will optimally increase root growth.

IAA increases root growth in terms of root length and number of branches. In order to study how different concentrations of IAA affect root growth patterns, modelling tools were combined with wet lab results to predict and visualise Arabidopsis root growth.

Collapse

2. Modelling of IAA synthesis

2.1 Objective

Determine the IAA expression level of a single E. coli cell with IAA promoter strength 4.536 RNA/min/μg substrate DNA, and then predict the number of bacteria to be placed in the seed coat to induce optimal root growth.


2.2 Description

The genetically engineered IAA pathway involves two genes, IaaM and IaaH, both of which are constitutively expressed. The IaaM gene encodes tryptophan-2-monooxygenase (T-2-monase) that catalyses the conversion of tryptophan (Trp) to indole-3-acetamide (IAM), which is then hydrolysed to release indole-3-acetic acid (IAA) by the hydrolase iaaH[3]. At the same time, the synthesised IAM and IAA will competitively inhibit the enzyme activity of tryptophan-2-monooxygenase, thereby inducing a negative feedback loop on the expression of IAA. The enzymatic reactions involved in the pathway are illustrated in Figure 1.


Figure 1: IAA synthesis pathway. (Diagram by Imperial College London iGEM team).


In addition, based on research carried out by mathematical biology research group from the University of Colorado[4], tryptophan is also negatively controlled inside bacteria. Therefore the tryptophan synthesis pathway should be integrated into the above model. Furthermore, in order to reduce the numbers of parameters, as most of the parameters in Figure 1 are not available to us, the IAA pathway is then simplified into two Michaelis Menten equations, which are combined with the tryptophan pathway and constitutive gene expression for T-2-monase and iaaH. The whole tryptophan IAA pathway model is described in Equation 1[5], and the parameters are defined in the parameters section below.

In this model, we made the following assumptions:

(1) We neglect the short time delay due to synthesis of Trp-T-2-monase (substrate-enzyme (ES) complex), IAM-iaaH (ES complex), IAM-T-2-monase (inhibitor-enzyme (EI) complex) and IAA- T-2-monase (inhibitor-enzyme (EI) complex) and assume that these species reach their equilibrium almost instantaneously.

(2) The degradation rate of IAA in the dark is extremely low compared to bacterial growth rate. Therefore we used bacterial growth rate as the IAA degradation rate in this model.

(3) During the modelling of the IAA pathway, we found that the rate-determining species for IAA synthesis is IAM, not the enzyme iaaH, since the production of IAM is inhibited by itself and IAA.


2.3 Results and discussion

Fig.2 below represents the output of our model.

1. How the concentration of each protein species varies with time.

2. The simulation of the enzymatic reaction for each of the species, with initial concentrations of OF = 1.54×10-4 µM, MF = 3.78×10-4 µM , E = 0.378 µM, Trp = 4.1 µM and all others = 0 [4].

Also, Fig.2 shows that the IAA expression level is 72.35 µM, which means that each bacterium produces 7.24×10-14 µmole per bacteria at steady state with bacterial volume equals to 10-15 dm3. From wet lab experiments we know that the optimal concentration of IAA to promote root growth is 0.1 nM, and the volume of an Arabidopsis seed coat approximately equals 3.6×10-9 m3 [7]. Therefore the number of bacteria required to be present in seed coat to maximally increase root growth of roots is 4.97 x 106.

The details of the calculation are listed below:

1. Number of moles produced by a single bacterium is 72.35 µm * 10-18 m3 (7.235 * 10-17µmol).

2. The number of moles of IAA need to be in one seed coat is 3.6 * 10-9 m3 * 0.1 nmol.

3. The number of bacteria need to be place in one seed coat is (3.6 * 10-10 µmol) / (7.235 * 10-17) = 4.97 * 106.

Figure 2 (a): The evolution of IAM vs. time. Figure 2 (b): The evolution of IAA vs. time.


In conclusion, we obtained the concentration of IAA produced by the IAA DNA construct (72.25 μM). From this value, we calculated the number of bacteria that would need to enter the root under ideal growth conditions and ignoring death and division of bacteria, which was found to be 4.97x106 bacteria for Arabidopsis. This value varies due to the variation in seed size of different of plants. Since bacterial cells can be lost from the plant and not all the bacteria from the seed coat will enter the plant, the number of bacteria required in the seed coat will be higher than this. Furthermore, the modelling of root growth in the next part helped us visualise the root growth.

Collapse

3. IAA uptake and root growth

3.1 Objective

1. Create a graphic program to demonstrate the growing process of the Arabidopsis root system, based on the principles of Lindenmayer system and plant physiology.

2. Use Matlab data fitting tools to develop relations between IAA concentration and growth rate and number of branches.


3.2 Description

We used computational tools to visulise the root growth phenomena (primary rootlength, branching, root density, etc) in different enviromental conditions, and specifically considered root order and root length. Root order describes the branching “generation” of a root system; a root without branching is defined as a zero-order root. Root growth depends on environmental factors, such as gravitation and soil heterogeneities.


3.2.1 Tropisms

A root system starts with a single root tip of a zero-order root. Then the root grows away from the plant stem in a conical way[10].

Root growth depends on environmental factors, such as gravitation and soil heterogeneities. Therefore, two more variables are defined to describe the plant adaptation[10]:

σ:-

- how strong the roots direction changes per 1 cm growth

- a larger value indicates a more deflected root and a more twisted root system

N:-

- the number of trials for the roots to find the optimal angles α and β for the rotation

of the downward movement

- N can be any real number. If N = 1.5, if means that N can be either 1 or 2.


Figure 3: Differences between root systems with different values of N and σ. (Modelling based on Daniel Leitner et al from BOKU, and codes were modified by Imperial College London iGEM team 2011).


3.2.2 Lindenmayer system and root growth modelling

An L-system is a parallel rewriting system, namely a variant of a formal grammar, most famously used to model the growth processes of plant development, but also able to model the morphology of a variety of organisms, due to the two main properties: recursiveness and self-similarity[11]. Plant models and natural-looking organic forms are easy to define, as by increasing the recursion level the form slowly 'grows' and becomes more complex.

Using L-systems for generating graphical images requires that the symbols in the model refer to elements of a drawing on the computer screen. It interprets each constant in an L-system model as a turtle command.

3.2.3 Root growth

The modelling of IAA uptake can give predictive answers to questions such as these:

"What is the primary root growth rate?"

"What does the root system look like after a certain period of time?"

"How does Arabidopsis respond to different IAA concentrations?"

We modified a MATLAB program developed by Daniel Leitner's research group[6] to demonstrate the 3D root system based on the principles of Lindenmayer system (turtle commands) and the root growth modelling toolbox developed by Daniel Leitner et al from BOKU (Universität für Bodenkultur Wien, University of Natural Resources and Life Sciences, Vienna)[12].

3.2.4 Data fitting

We took growth rate parameters from the literature and analysed the raw data from our wet lab to give more accurate and suitable parameters for our project. Arabidopsis plants were planted and root length and number of branches recorded every two days from day 0 to day 9. Root length, daily root growth rate and number of branches were plotted against time and IAA concentration.

3.3 Results and discussion


3.3.1 Visualisation of a root system

The values from the literature give the relationship between external IAA concentration and elongation of the roots as 5*10-5 mol/L → 200 µm elongation in 30 min. The modelling parameter of growth speed is therefore 9.6*10-3 m/day[9].

We observed real root growth patterns and modified our simulation to give a more reliable and accurate prediction of root growth. Arabidopsis has a primary root with zeroth order and it is thicker than the branches. Arabidopsis normally grows to the depth of 20-30 cm inside the soil and branches only once. The 3D picture shown below predicts the root growth with different elongation rate (with IAA = 0.96 cm/day; without IAA = 0.46 cm/day[10]). They can be compared with the photo of a real root system.

Figure 4: 3D visalisation of the arabidopsis root system. The graph Figure 4(a)(b) shows the demonstration of the Arabidopsis root system in different IAA concentration conditions with a growth time of 20 days as our simulation results. Figure 4(c)(d) are the actual photos of real Arabidopsis plants taken from the literature and our wet lab. (Modelling based on Daniel Leitner et al from BOKU, and codes were modified by Imperial College London iGEM team 2011).





Figure 5: The graphic analysis of the 3D root system. By taking cross and longitudinal sections of the root system at different positions, Figure 5(a) is the root length distribution (by fraction) against the root depth. Figure 5(c) is the surface area distribution map. This graph will give guidance for placing GM E. coli inside the soil. E. coli should be placed at the depth with the maximal root surface area (6 cm) inside the soil for the maximal uptake efficiency. (Modelling based on Daniel Leitner et al from BOKU, and codes were modified by Imperial College London iGEM team 2011).

NEW SINCE EUROPE JAMBOREE

3.3.2 Data fitting

We designed an experiment to support the data fitting and tested it before the European Regional Jamboree. The results are integrated into Section 2. The effect of IAA on Arabidopsis roots. Click here to see the details of the first data-fitting experiment.

After the European Regional Jamboree, we improved the protocol to include the following considerations and improvements:-

a) The degradation of IAA:

The wet lab results shows that the IAA concentration in phytogel media is negligible after 9 days, the degradation of IAA is an important factor when root growth is modelled. The IAA concentration can be calculated everyday using the equation: remaining IAA (%) = 95.75 - 2.9x + 0.05x2, where x is the number of days after the auxin has been added.[14]

b) The number of samples:

We prepared 20 replica for each auxin concentration to reduce the error.

c) The measurements technique:

Since the uptake rate and the IAA degradation rate changes rapidly, we measured Arabidopsis roots in phytogel everyday instead of once every three days. Therefore we have correlated the daily growth rate with IAA concentration.

Figure 6: Daily growth rate of Arabidopsis against the logarithms of the additional IAA concentration. The relation can be described by the Gaussian equation.


Then, the mathematic model we got from the data fitting experiments was integrated with our 3D root simulation system. This produced a MATLAB toolbox with IAA concentration as the input and the 3D root model as the output. We defined a valid IAA concentration range from 10-3 mol/L (1 mM) to 10-14 mol/L (0.01 pM) for the simulation based on the following reasons:

a) When the IAA concentration is higher than 10-3 mol/L (1 mM), the Arabidopsis will be killed.

b) When the IAA concentration is lower than 10-14 mol/L (0.01 pM), the Arabidopsis will not be affected since the IAA produced by Arabidopsis itself is much more. Also, it is reasonable to define a limitation of IAA dilution to keep the percentage error low.

c) The Gaussian equation can only describe the relation between the growth rate and the IAA concentration within this range accurately.

Our wetlab results shows two different optimal IAA concentrations for the Arabidopsis root growth, 0.1nM in liquid media and 1pM in phytogel. The data fitting experiment is done inside phytogel.

Figure 7: The results of the simulation with different input.



The video below shows how the MATLAB toolbox predicting the root system after 25 days given a certain IAA concentration.The results simulated are supported by our wetlab experiments.(Please select the 720HD version when you play the video to see the details clearly.)

Collapse

4. Parameters
5. Matlab code
6. References

[1] Hutcheson SW, Kosuge T (1985) Regulation of 3-indole acetic acid production in Pseudomonas syringae pv savastanoi: Purification and properties of tryptophan 2-monooxygenase. The Journal of Biological Chemistry 260(10): 6281-6287.

[2] Saepen S, Vanderleyden J, Remans R (2007) Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiology Reviews 31(4) 425-448.

[3] Cheng Y, Dai C, Zhao Y (2006), Auxin biosynthesis by the YUCCA flavin monooxygenases controls the formation of floral organs and vascular tissues in Arabidopsis. Genes & Dev 1790-199. Doi: 10.1101/gad.1415106

[4] http://mathbio.colorado.edu/mediawiki/index.php/MBW:Modelling_the_Tryptophan_Operon

[5] Santillan M, Mackey MC (2001) Dynamic regulation of the tryptophan operon: a modeling study and comparison with experimental data. PNAS 98(4) 1364-1369.

[6] http://www.ccdb.ualberta.ca/CCDB/cgi-bin/STAT_NEW.cgi

[7] http://www.seedgenes.org/Tutorial.html

[8] Leitner D, Klepsch S, Bodner G, Schnepf A (2009) A dynamic root system growth model based on L-Systems: tropisms and coupling to nutrient uptake from soil. Plant and Soil 332(1-2): 177-192.

[9] Rayle DL, Evans ML, Hertel L (1970) Action of auxin on cell elongation. Proc Nat Acd Sci USA 65(1): 184-191.

[10] Beemster GTS, Baskin TI (1998) Analysis of cell division and elongation underlying the developmental acceleration of root growth in Arabidopsis thaliana. Plant Physiology 116(4): 1515-1526.

[11] Hu H, Cao X, Lin B (2003) Three dimensional Lindenmayer system. The Journal of Engineering Graphics.

[12] Leitner D, Schnepf A, Klepsch S, Roose T (2009) Comparison of nutrient uptake between 3-dimensional simulation and an averaged root system model. Plant Biosystems 144(2): 443-447.

[13] Brenda: The Comprehensive Enzyme Information System (http://www.brenda-enzymes.org/).

[14] James D, Stephen K, Robert M (1986) The Effect of Salt Concentration on Auxin Stability in Culture Media. Plant Physiology 81: 934-936.

Collapse

M2: Design M2: Assembly