Team:Harvard/Human Practices/Timeline
From 2011.igem.org
(62 intermediate revisions not shown) | |||
Line 1: | Line 1: | ||
{{:Team:Harvard/Template:CSS}} | {{:Team:Harvard/Template:CSS}} | ||
- | {{:Team:Harvard/Template: | + | {{:Team:Harvard/Template:MediaBar}} |
+ | {{:Team:Harvard/Template:MediaGrayBar}} | ||
<html> | <html> | ||
- | |||
- | |||
+ | <head> | ||
+ | <!-- Timeline script adapted from http://www.csslab.cl/2011/08/18/jquery-timelinr/. Thanks!! --> | ||
+ | <meta http-equiv="Content-Type" content="text/html; charset=utf-8"/> | ||
- | < | + | <link rel="stylesheet" href=" |
+ | http://www.hcs.harvard.edu/~stahr/javascript/style.css" type="text/css" media="screen" /> | ||
- | + | <!-- Extra custom css --> | |
+ | <style type="text/css"> | ||
+ | .issuedate | ||
+ | { | ||
+ | color: #484848; | ||
+ | background: none; | ||
+ | font-weight: normal; | ||
+ | margin-right: 70px; | ||
+ | padding-top: .5em; | ||
+ | padding-bottom: .17em; | ||
+ | border-bottom: none; | ||
+ | font-size:150%; | ||
+ | line-height:130%; | ||
+ | } | ||
- | + | #dates .iGEM11 { | |
+ | font-size: 27px; | ||
+ | } | ||
+ | </style> | ||
<script src="https://ajax.googleapis.com/ajax/libs/jquery/1.6.2/jquery.min.js" type="text/javascript"></script> | <script src="https://ajax.googleapis.com/ajax/libs/jquery/1.6.2/jquery.min.js" type="text/javascript"></script> | ||
- | <script src="http:// | + | <script src="http://www.hcs.harvard.edu/~stahr/javascript/jquery.timelinr-0.9.3.js" type="text/javascript"></script> |
<script type="text/javascript"> | <script type="text/javascript"> | ||
Line 25: | Line 44: | ||
$().timelinr({ | $().timelinr({ | ||
- | + | datesSpeed: 800, | |
- | + | issuesSpeed: 800, | |
- | + | issuesTransparency: 1.0, | |
arrowKeys: 'true', | arrowKeys: 'true', | ||
Line 35: | Line 54: | ||
</script> | </script> | ||
+ | |||
+ | <!-- End timeline | ||
+ | |||
+ | <!-- Tooltip script adapted from http://code.drewwilson.com/entry/tiptip-jquery-plugin --> | ||
+ | |||
+ | <script src="http://people.fas.harvard.edu/~jwchew/iGEM/tooltip/jquery.tipTip.js" type="text/javascript"></script> | ||
+ | <script src="http://people.fas.harvard.edu/~jwchew/iGEM/tooltip/jquery.tipTip.minified.js" type="text/javascript"></script> | ||
+ | <style src="http://people.fas.harvard.edu/~jwchew/iGEM/tooltip/tipTip.css" type="text/css"></style> | ||
+ | |||
+ | <script type="text/javascript"> | ||
+ | |||
+ | $(function(){ | ||
+ | $(".tooltip").tipTip(); | ||
+ | }); | ||
+ | |||
+ | </script> | ||
+ | |||
+ | <!-- End tooltip jquery --> | ||
</head> | </head> | ||
<div class="whitebox"> | <div class="whitebox"> | ||
- | <h1>Zinc Finger | + | <h1>Zinc Finger Historical Timeline</h1> |
<div id="timeline"> | <div id="timeline"> | ||
<ul id="dates"> | <ul id="dates"> | ||
- | <li><a href="#"> | + | <li><a href="#" class="dateobject">1985</a></li> |
- | <li><a href="#"> | + | <li><a href="#" class="dateobject">1991</a></li> |
- | <li><a href="#"> | + | <li><a href="#" class="dateobject">1995</a></li> |
- | <li><a href="#"> | + | <li><a href="#" class="dateobject">1996</a></li> |
- | <li><a href="#"> | + | <li><a href="#" class="dateobject">2000</a></li> |
- | <li><a href="#"> | + | <li><a href="#" class="dateobject">2004</a></li> |
- | <li><a href="#"> | + | <li><a href="#" class="dateobject">2008</a></li> |
- | <li><a href="#"> | + | <li><a href="#" class="dateobject">2009</a></li> |
- | <li><a href="#"> | + | <li><a href="#" class="dateobject">2011</a></li> |
- | <li><a href="#"> | + | <li><a href="#" class="dateobject iGEM11">iGEM '11</a></li> |
</ul> | </ul> | ||
Line 68: | Line 105: | ||
<ul id="issues"> | <ul id="issues"> | ||
- | <li id="# | + | <li id="#1985"> |
- | <img src=" | + | <img src="https://static.igem.org/mediawiki/2011/c/cb/HARV1985Miller_etal.png" width="256" height="256" /> |
- | < | + | <div class="issuedate">Discovery of the zinc finger protein</div> |
- | <p> | + | <p>Jonathon Miller, A. D. McLachlan, and Sir Aaron Klug first identify the repeated binding motif in Transcription Factor IIIA and are the first to use the term ‘zinc finger.'</p> |
</li> | </li> | ||
- | <li id="# | + | <li id="#1991"> |
- | <img src=" | + | <img src="https://static.igem.org/mediawiki/2011/7/76/HARVzif268_256.png" width="256" height="256" /> |
- | < | + | <div class="issuedate">First crystal structure of a zinc finger</div> |
- | <p> | + | <p>Carl Pabo and Nikola Pavletich of Johns Hopkins University solve the crystal structure of zif268, now the most-commonly studied zinc finger. This paved the way for construction of binding models to describe how zinc fingers bind to DNA, setting the foundation for future custom engineering of zinc finger proteins.</p> |
</li> | </li> | ||
- | <li id="# | + | <li id="#1995"> |
- | <img src=" | + | <img src="https://static.igem.org/mediawiki/2011/4/49/HARVSangamo.png" width="256" height="256" /> |
- | < | + | <div class="issuedate">CEO Edward Lanphier founds Sangamo Biosciences</div> |
- | <p> | + | <p>Edward Lanphier leaves Somatix Therapy Corporation and makes a deal for exclusive rights to the work of Srinivan Chandrasegaran of Johns Hopkins University who combined the Fok I nuclease with zinc fingers.</p> |
</li> | </li> | ||
- | <li id="# | + | <li id="#1996"> |
- | <img src=" | + | <img src="https://static.igem.org/mediawiki/2011/7/73/HARVZFN_diagram_256.png" width="256" height="256" /> |
- | < | + | <div class="issuedate">Srinivasan Chandrasegaran publishes work on fusing the Fok I nuclease to zinc fingers</div> |
- | <p> | + | <p>By attaching nuclease proteins to zinc fingers, a new genome editing tool was created. The DNA-binding specificity of zinc fingers combined with the DNA-cutting ability of nucleases opened up possibilities for future research in gene therapy by allowing researchers to directly modify the genome though use of zinc finger nucleases.</p> |
</li> | </li> | ||
- | <li id="# | + | <li id="#2000"> |
- | <img src=" | + | <img src="https://static.igem.org/mediawiki/2011/5/5e/HARVStockSGMO_256.PNG" width="256" height="256" /> |
- | < | + | <div class="issuedate">Sangamo enters the public sector</div> |
- | <p> | + | <p>In April 2000, five years after its founding, Sangamo Biosciences goes public offering 3.5 million shares at a starting value of $15 per share.</p> |
</li> | </li> | ||
- | <li id="# | + | <li id="#2004"> |
- | <img src=" | + | <img src="https://static.igem.org/mediawiki/2011/f/ff/HARVTrademarkOffice.png" width="256" height="256" /> |
- | < | + | <div class="issuedate">Sangamo patents zinc finger nuclease technology</div> |
- | <p> | + | <p>Sangamo's patent, titled "Nucleic acid binding proteins (zinc finger proteins design rules)", ensures that any use or production of zinc fingers with attached nucleases is the intellectual property of Sangamo.</p> |
</li> | </li> | ||
- | <li id="# | + | <li id="#2008"> |
- | <img src=" | + | <img src="https://static.igem.org/mediawiki/2011/6/67/HARVOpen_256.png" width="256" height="256" /> |
- | < | + | <div class="issuedate">Rapid open source production of zinc finger nucleases becomes available</div> |
- | <p> | + | <p>Researcher Keith Joung of Harvard University and Mass. General Hospital develops a method for making zinc finger nuclease proteins that bind to custom target sequences, utilizing a bacterial two-hybrid screening system to identify specific zinc finger binders to a DNA sequence of interest.</p> |
</li> | </li> | ||
- | <li id="# | + | <li id="#2009"> |
<img src="http://people.fas.harvard.edu/~jwchew/iGEM/images/8.png" width="256" height="256" /> | <img src="http://people.fas.harvard.edu/~jwchew/iGEM/images/8.png" width="256" height="256" /> | ||
- | < | + | <div class="issuedate">Zinc finger nuclease enters clinical trials</div> |
+ | |||
+ | <p>Sangamo and University of Pennsylvania begin clinical trials with a zinc finger nuclease designed to target the CCR5 gene and inhibit HIV. Success of this therapeutic could prove a significant advance for gene therapy. </p> | ||
- | |||
</li> | </li> | ||
- | <li id="# | + | <li id="#2011"> |
- | <img src=" | + | <img src="https://static.igem.org/mediawiki/2011/7/7f/HARVCoda_256.png" width="256" height="256" /> |
- | < | + | <div class="issuedate">Context-dependency improves open-source zinc finger engineering</div> |
- | <p> | + | <p>Keith Joung publishes tables of zinc finger binding sites that account for context-dependent effects and can be rearranged to form custom zinc finger proteins that bind to a variety of DNA sequences. This greatly increases the ease of engineering novel zinc fingers based on the structures of previously characterized zinc fingers.</p> |
</li> | </li> | ||
- | <li id="# | + | <li id="#Harvard iGEM '11"> |
- | <img src=" | + | <img src="https://static.igem.org/mediawiki/2011/0/02/HARVveritaslogo_256.png" width="256" height="256" /> |
- | < | + | <div class="issuedate">Harvard iGEM develops a novel method to engineer custom zinc fingers</div> |
- | <p> | + | <p>Using novel integration of existing technologies, we have developed a rapid, comparatively low-cost, <strong>open source</strong> method for making thousands of custom zinc fingers by integrating MAGE, lambda red, and chip-based synthesis technologies. Our work greatly increases the ease of access to zinc finger technology for researchers worldwide.</p> |
</li> | </li> |
Latest revision as of 02:39, 29 October 2011
Zinc Finger Historical Timeline
-
Discovery of the zinc finger protein
Jonathon Miller, A. D. McLachlan, and Sir Aaron Klug first identify the repeated binding motif in Transcription Factor IIIA and are the first to use the term ‘zinc finger.'
-
First crystal structure of a zinc finger
Carl Pabo and Nikola Pavletich of Johns Hopkins University solve the crystal structure of zif268, now the most-commonly studied zinc finger. This paved the way for construction of binding models to describe how zinc fingers bind to DNA, setting the foundation for future custom engineering of zinc finger proteins.
-
CEO Edward Lanphier founds Sangamo Biosciences
Edward Lanphier leaves Somatix Therapy Corporation and makes a deal for exclusive rights to the work of Srinivan Chandrasegaran of Johns Hopkins University who combined the Fok I nuclease with zinc fingers.
-
Srinivasan Chandrasegaran publishes work on fusing the Fok I nuclease to zinc fingers
By attaching nuclease proteins to zinc fingers, a new genome editing tool was created. The DNA-binding specificity of zinc fingers combined with the DNA-cutting ability of nucleases opened up possibilities for future research in gene therapy by allowing researchers to directly modify the genome though use of zinc finger nucleases.
-
Sangamo enters the public sector
In April 2000, five years after its founding, Sangamo Biosciences goes public offering 3.5 million shares at a starting value of $15 per share.
-
Sangamo patents zinc finger nuclease technology
Sangamo's patent, titled "Nucleic acid binding proteins (zinc finger proteins design rules)", ensures that any use or production of zinc fingers with attached nucleases is the intellectual property of Sangamo.
-
Rapid open source production of zinc finger nucleases becomes available
Researcher Keith Joung of Harvard University and Mass. General Hospital develops a method for making zinc finger nuclease proteins that bind to custom target sequences, utilizing a bacterial two-hybrid screening system to identify specific zinc finger binders to a DNA sequence of interest.
-
Zinc finger nuclease enters clinical trials
Sangamo and University of Pennsylvania begin clinical trials with a zinc finger nuclease designed to target the CCR5 gene and inhibit HIV. Success of this therapeutic could prove a significant advance for gene therapy.
-
Context-dependency improves open-source zinc finger engineering
Keith Joung publishes tables of zinc finger binding sites that account for context-dependent effects and can be rearranged to form custom zinc finger proteins that bind to a variety of DNA sequences. This greatly increases the ease of engineering novel zinc fingers based on the structures of previously characterized zinc fingers.
-
Harvard iGEM develops a novel method to engineer custom zinc fingers
Using novel integration of existing technologies, we have developed a rapid, comparatively low-cost, open source method for making thousands of custom zinc fingers by integrating MAGE, lambda red, and chip-based synthesis technologies. Our work greatly increases the ease of access to zinc finger technology for researchers worldwide.