Team:Kyoto

From 2011.igem.org

(Difference between revisions)
(Sponsors)
(Achievement)
 
(18 intermediate revisions not shown)
Line 8: Line 8:
As such we named it Carnivorous E.coli.
As such we named it Carnivorous E.coli.
Carnivorous E.coli emits light when it is hungry. This will attract insects to it.
Carnivorous E.coli emits light when it is hungry. This will attract insects to it.
-
Then, it secretes a viscous substance to catch the insects.
+
Then, it secretes a viscous substance to capture the insects.
-
The insects caught are digested by the protease and chitinase in the secretion.
+
The captured insects are digested by the chitinase in the secretion.
Long story short, our Carnivorous E.coli can hunt!
Long story short, our Carnivorous E.coli can hunt!
<!-- https://static.igem.org/mediawiki/2011/3/3f/Kyoto_Project_Image.png -->
<!-- https://static.igem.org/mediawiki/2011/3/3f/Kyoto_Project_Image.png -->
Line 18: Line 18:
== <html><a href="/Team:Kyoto/Hunger"><span class="red_title">Team Hunger</span></a></html> ==
== <html><a href="/Team:Kyoto/Hunger"><span class="red_title">Team Hunger</span></a></html> ==
<html><div id="hunger"><a href="/Team:Kyoto/Hunger"><img src="https://static.igem.org/mediawiki/2011/3/3f/Kyoto_Project_Image.png"></img></a></div></html>
<html><div id="hunger"><a href="/Team:Kyoto/Hunger"><img src="https://static.igem.org/mediawiki/2011/3/3f/Kyoto_Project_Image.png"></img></a></div></html>
-
It is a burden for the E.coli to emit light.
+
Carnivorous E.coli attracts insects by emitting light, but it is a burden for ''E.coli''.
-
However, this burden can be reduced by using the nitrogen regulatory proteins, NtrB and NtrC, to activate a certain promoter when the supply of nitrogen is not enough.
+
To reduce this burden, we use nitrogen regulatory proteins, NtrB and NtrC. They activate &sigma;<sup>54</sup> promoter when the supply of nitrogen is not enough.
     </div>
     </div>
     <div>
     <div>
-
== <html><a href="/Team:Kyoto/Luminescence"><span class="green_title">Team Luminescence</span></a></html> ==
+
== <html><a href="/Team:Kyoto/Capture"><span class="green_title">Team Capture</span></a></html> ==
-
<html><div id="capture"><a href="/Team:Kyoto/Luminescence"><img src="https://static.igem.org/mediawiki/2011/3/3f/Kyoto_Project_Image.png"></img></a></div></html>
+
<html><div id="capture"><a href="/Team:Kyoto/Capture"><img src="https://static.igem.org/mediawiki/2011/3/3f/Kyoto_Project_Image.png"></img></a></div></html>
 +
There are many methods to attract bugs, for instance, using pheromone, smell, and light.
 +
In this study, we focused on light as a method to lure insects.
 +
Carnivorous E.coli will emit light and attracts bugs like glowworms by using Bioluciferase from <html><a href="https://2010.igem.org/Team:Cambridge">2010 Cambridge</a></html>.
 +
<!--
There are many ways to attract bugs, for instance using pheromone, but it is difficult for E.coli to synthesize complex compounds like pheromone.
There are many ways to attract bugs, for instance using pheromone, but it is difficult for E.coli to synthesize complex compounds like pheromone.
Carnivorous E.coli emits light and attracts bugs like glowworms by using Bioluciferase from
Carnivorous E.coli emits light and attracts bugs like glowworms by using Bioluciferase from
<html><a href="https://2010.igem.org/Team:Cambridge">2010 Cambridge</a></html>.
<html><a href="https://2010.igem.org/Team:Cambridge">2010 Cambridge</a></html>.
 +
-->
     </div>
     </div>
Line 35: Line 40:
== <html><a href="/Team:Kyoto/Digestion"><span class="blue_title">Team Digestion</span></a></html> ==
== <html><a href="/Team:Kyoto/Digestion"><span class="blue_title">Team Digestion</span></a></html> ==
<html><div id="digestion"><a href="/Team:Kyoto/Digestion"><img src="https://static.igem.org/mediawiki/2011/3/3f/Kyoto_Project_Image.png"></img></a></div></html>
<html><div id="digestion"><a href="/Team:Kyoto/Digestion"><img src="https://static.igem.org/mediawiki/2011/3/3f/Kyoto_Project_Image.png"></img></a></div></html>
-
An insect body is covered with a hard integument containing mainly chitin. To decompose the integument, we used ChiA genes, which encode chitinase. In order to measure the chitinase activity of the culture supernatant, we evaluated the effects of the medium and cell growth.
+
An insect body is covered with a hard integument containing mainly chitin. To decompose the integument, we used ChiA gene, which encode chitinase. In order to measure the chitinase activity of the culture supernatant, we evaluated the effects of the medium and cell growth.
     </div>
     </div>
</div>
</div>
Line 69: Line 74:
<div id="under_box">
<div id="under_box">
     <div>
     <div>
-
==<span class="red_title">Achievement</span>==
 
 +
==<span class="red_title">Achievement</span>==
 +
<ul>
 +
  <li>We confirmed that the wavelength of light emitted by E.coli is suitable to lure drosophilas.</li>
 +
  <li>We constructed new biobrick which produces chitinase.</li>
 +
  <li>We constructed new biobrick that is controlled by the concentration of glutamine.</li>
 +
  <li>We established new method for measurement of promoter activity with RPU.</li>
 +
  <li>We held <html><a href="https://2011.igem.org/Summer_events/2011_JAPAN_Meetup">the Japanese iGEM meeting</a></html> at Kyoto University.
 +
</ul>
     </div>
     </div>
     <div>
     <div>
 +
==<html><a href="https://2011.igem.org/Team:Kyoto/HumanPractice"><span class="green_title">Human Practice</span></a></html>==
==<html><a href="https://2011.igem.org/Team:Kyoto/HumanPractice"><span class="green_title">Human Practice</span></a></html>==
-
Because synthetic biology is a comparatively new way of understanding life, we will develop this area much further. But ,in fact, Japanese high school students have few chances to know it. At the same time, this area entails problems of bioethics and we must consider these problems. We want to offer high school students chances to think them. That's why we targeted them and performed these activities.
+
As synthetic biology is a comparatively new way of understanding life, we plan to develop this area much further. However, this area entails problems of bioethics and so we must consider these problems as well. Unfortunately, Japanese high school students do not have many chances to come across these topics. We hope to offer high school students more opportunities to think on them. That's why we targeted them and performed these activities.
     </div>
     </div>
     <div>
     <div>
 +
==<span class="yellow_title">Sponsors</span>==
==<span class="yellow_title">Sponsors</span>==
[[File:京大ロゴ.jpg | link=http://www.kyoto-u.ac.jp/|]]
[[File:京大ロゴ.jpg | link=http://www.kyoto-u.ac.jp/|]]
 +
[[File:CosmoBio.jpg | link=http://www.cosmobio.co.jp |]]
     </div>
     </div>
<html>
<html>

Latest revision as of 03:58, 6 October 2011

Contents

Summary

We created new E.coli which hunts and eats insects. As such we named it Carnivorous E.coli. Carnivorous E.coli emits light when it is hungry. This will attract insects to it. Then, it secretes a viscous substance to capture the insects. The captured insects are digested by the chitinase in the secretion. Long story short, our Carnivorous E.coli can hunt!

Team Hunger

Carnivorous E.coli attracts insects by emitting light, but it is a burden for E.coli. To reduce this burden, we use nitrogen regulatory proteins, NtrB and NtrC. They activate σ54 promoter when the supply of nitrogen is not enough.

Team Capture

There are many methods to attract bugs, for instance, using pheromone, smell, and light. In this study, we focused on light as a method to lure insects. Carnivorous E.coli will emit light and attracts bugs like glowworms by using Bioluciferase from 2010 Cambridge.

Team Digestion

An insect body is covered with a hard integument containing mainly chitin. To decompose the integument, we used ChiA gene, which encode chitinase. In order to measure the chitinase activity of the culture supernatant, we evaluated the effects of the medium and cell growth.

Achievement

  • We confirmed that the wavelength of light emitted by E.coli is suitable to lure drosophilas.
  • We constructed new biobrick which produces chitinase.
  • We constructed new biobrick that is controlled by the concentration of glutamine.
  • We established new method for measurement of promoter activity with RPU.
  • We held the Japanese iGEM meeting at Kyoto University.

Human Practice

As synthetic biology is a comparatively new way of understanding life, we plan to develop this area much further. However, this area entails problems of bioethics and so we must consider these problems as well. Unfortunately, Japanese high school students do not have many chances to come across these topics. We hope to offer high school students more opportunities to think on them. That's why we targeted them and performed these activities.

Sponsors

京大ロゴ.jpg CosmoBio.jpg