Team:DTU-Denmark/Matlab
From 2011.igem.org
(Difference between revisions)
(→Simulation) |
(→Simulation) |
||
(18 intermediate revisions not shown) | |||
Line 1: | Line 1: | ||
- | {{:Team:DTU-Denmark/Templates/Standard_page_begin|Matlab | + | {{:Team:DTU-Denmark/Templates/Standard_page_begin|Matlab}} |
+ | ==Steady-state== | ||
+ | For the steady-state analysis the following script calls a function that calculates the steady-state solution. | ||
+ | <pre style="height: 200px;"> | ||
+ | % Call file | ||
+ | % Model ver. 7 | ||
- | = | + | % The model contains the analytical solution in regard to m*max/m for the 3 coupled differential equations, one for ChiXR (r), |
- | + | % ChiX (s), and ChiP (m) | |
+ | % This solution is only valid for p_s = 0! | ||
+ | % In regard to Model ver. 5, now only alfa_s and alfa_r (and not the | ||
+ | % relative amount in regard to alfa_m) are used as the axis. | ||
- | [[ | + | clc |
+ | clear | ||
+ | close all | ||
+ | %% | ||
+ | %% Steady state solution for ChiP | ||
+ | %% Model Parameter | ||
+ | % TRANSCRIPTION RATES: | ||
+ | alfa_m= 2.57; % transcription rate of m (ChiP) From Overgaard fig1; alpha_m = beta_m * m' [nmol/time] | ||
+ | alfa_s= 2.57; % transcription rate of m (ChiX) guess! | ||
+ | |||
+ | % Degradation and dilution rates: | ||
+ | beta_m= 0.0257; % background rate of degradation and dilution of m (ChiP mRNA) From Overgaard [1/min] | ||
+ | beta_s= 0.0257; % background rate of degradation and dilution of s (ChiX sRNA) From Overgaard [1/min] | ||
+ | beta_r= 0.0257; % background rate of degradation and dilution of r (ChiXR sRNA), guess - no data [1/min] | ||
+ | |||
+ | % Constants: | ||
+ | k_s= 0.000820; % From Overgaard [1/(nmol*min)] | ||
+ | k_r= 0.00820; % Guess - no data [1/(nmol*min)] | ||
+ | lambda_s = beta_s*beta_m/k_s; | ||
+ | lambda_r = beta_s*beta_r/k_r; | ||
+ | |||
+ | m_ss_max = alfa_m/beta_m; % the maximum steady state level of m [nmol] | ||
+ | |||
+ | % Probability of co-degradation: | ||
+ | p_r= 1; % Probability that r is codegraded with s | ||
+ | |||
+ | %% Simulation | ||
+ | N_s = 201; % Number of x values (s). | ||
+ | N_r = 201; % Number of y values (r). | ||
+ | |||
+ | parameter =[lambda_s lambda_r p_r]; | ||
+ | [X, Y, SS_cat SS_stoch] = ss_simu_ver7(parameter, N_s, N_r); | ||
+ | |||
+ | %% Plotting | ||
+ | figure_no =1; % Figure number for easy naming of the figures. | ||
+ | |||
+ | figure | ||
+ | name=[' catalytic: \lambda_s=', num2str(lambda_s), ' \lambda_r=', num2str(lambda_r), ' p_r=', num2str(p_r)]; % part of the title | ||
+ | ss_plot_single_ver7( X, Y, SS_cat, name ); | ||
+ | saveas(gcf,['Figure',int2str(figure_no),'_SS_1_subplot.jpg']) | ||
+ | |||
+ | figure | ||
+ | name=[' stochiometric: \lambda_s=', num2str(lambda_s), ' \lambda_r=', num2str(lambda_r)]; % part of the title | ||
+ | ss_plot_single_ver7( X, Y, SS_stoch, name ); | ||
+ | saveas(gcf,['Figure',int2str(figure_no),'_SS_1_subplot.jpg']) | ||
+ | </pre> | ||
+ | |||
+ | The following function calculates the steady-state given a set of parameter inputs. | ||
+ | |||
+ | <pre style="height: 200px;"> | ||
+ | function [ X, Y, SS_cat SS_stoch] = ss_simu_ver7( par, N_s, N_r ) | ||
+ | %SIMU Simulates model_ver7 based on input parameters and N_s*N_r inputs | ||
+ | % This model was made by the DTU 2011 iGEM team, consult our wiki for info | ||
+ | % regarding deriving the model: https://2011.igem.org/Team:DTU-Denmark | ||
+ | %% Parameters. | ||
+ | lambda_s= par(1); | ||
+ | lambda_r= par(2); | ||
+ | p_r= par(3); | ||
+ | |||
+ | alpha_s_min = 0.01; | ||
+ | alpha_r_min = 0.0001; | ||
+ | alpha_s_max = 10000; | ||
+ | alpha_r_max = 100; | ||
+ | alpha_s_no = N_s; | ||
+ | alpha_r_no = N_r; | ||
+ | |||
+ | SS_cat=zeros(alpha_r_no,alpha_s_no); | ||
+ | SS_stoch=zeros(alpha_r_no,alpha_s_no); | ||
+ | i=1; | ||
+ | j=1; | ||
+ | vector_s=logspace(log10(alpha_s_min), log10(alpha_s_max), alpha_s_no); | ||
+ | vector_r=logspace(log10(alpha_r_min), log10(alpha_r_max), alpha_r_no); | ||
+ | %% Calculate the steady state for the catalytical and stochiometric model | ||
+ | |||
+ | for X_s = vector_s | ||
+ | for X_r=vector_r | ||
+ | alfa_s= X_s; | ||
+ | alfa_r= X_r; | ||
+ | SS_stoch(i,j)= 1/( (alfa_s*p_r - alfa_r - lambda_r + 2*p_r*lambda_s + sqrt((alfa_s*p_r - alfa_r - lambda_r)^2 + 4*p_r*alfa_s*lambda_r ))/(2*p_r*lambda_s) ); | ||
+ | SS_cat(i,j)= 1/( 1 + alfa_s/lambda_s/(1 + alfa_r/lambda_r) ); | ||
+ | i=i+1; | ||
+ | end; | ||
+ | i=1; | ||
+ | j=j+1; | ||
+ | end; | ||
+ | [X,Y]= meshgrid(vector_s, vector_r); | ||
+ | |||
+ | end | ||
+ | |||
+ | |||
+ | </pre> | ||
+ | |||
+ | The following function plots steady-state values. | ||
+ | |||
+ | <pre style="height: 200px;"> | ||
+ | function ss_plot_single_ver7( X, Y, SS,name) | ||
+ | %% Plots the output from call_model_ver7. | ||
+ | % This model was made by the DTU 2011 iGEM team, consult our wiki for info | ||
+ | % regarding deriving the model: https://2011.igem.org/Team:DTU-Denmark | ||
+ | %% Various functions for plotting | ||
+ | %SS_PLOT Plots steady-states as | ||
+ | %surfc(X, Y, SS); % surface plot with contours | ||
+ | %surf(X, Y, SS); % surface plot without contours | ||
+ | %contourf(X,Y,SS,100) | ||
+ | %meshc(X, Y, SS); % surface plot with contours | ||
+ | pcolor(X, Y, SS); % | ||
+ | shading flat %[interp, flat or faceted] | ||
+ | %contour(X, Y, SS, 3) % contour plot, with 3 contours | ||
+ | %% color map | ||
+ | map = 1/255*[225 204 0; % DTU colormap with the 14 colors | ||
+ | 225 153 0; | ||
+ | 255 102 0 ; | ||
+ | 255 0 0; | ||
+ | 153 0 0; | ||
+ | 255 0 153; | ||
+ | 204 51 153; | ||
+ | 153 0 102; | ||
+ | 102 0 102; | ||
+ | 102 0 153; | ||
+ | 51 102 204; | ||
+ | 51 204 255; | ||
+ | 153 204 51; | ||
+ | 102 204 0]; | ||
+ | |||
+ | map2 = 1/255*[225 204 0; % DTU colormap with in-between colors | ||
+ | 225 153 0; % | ||
+ | 240 125 0; | ||
+ | 255 102 0 ; % | ||
+ | 255 50 0; | ||
+ | 255 0 0; % | ||
+ | 200 0 0; | ||
+ | 153 0 0; % | ||
+ | 200 0 75; | ||
+ | 255 0 153;% | ||
+ | 230 25 153 | ||
+ | 204 51 153;% | ||
+ | 175 25 130; | ||
+ | 153 0 102;% | ||
+ | 130 0 102; | ||
+ | 102 0 102;% | ||
+ | 102 0 130; | ||
+ | 102 0 153;% | ||
+ | 75 50 175; | ||
+ | 51 102 204;% | ||
+ | 51 150 230; | ||
+ | 51 204 255;% | ||
+ | 102 204 153; | ||
+ | 153 204 51;% | ||
+ | 130 204 25; | ||
+ | 102 204 0];% | ||
+ | %colormap(map2) | ||
+ | caxis ([0 1]); % specify the min and max value for the colorbar | ||
+ | colorbar % add the color bar | ||
+ | %% Add contours | ||
+ | hold on | ||
+ | contour(X, Y, SS, [0.05 0.05], '-.','LineColor', [0.2 0.2 0.2] ,'LineWidth',3) % contour plot, 5% of max value | ||
+ | contour(X, Y, SS, [0.25 0.25], '-.', 'LineColor',[0.5 0.5 0.5] ,'LineWidth',3) % contour plot, 25% of max value | ||
+ | contour(X, Y, SS, [0.5 0.5], '--k' ,'LineWidth',3) % contour plot, 50% maximum value | ||
+ | contour(X, Y, SS, [0.75 0.75], '-.','LineColor', [0.5 0.5 0.5] ,'LineWidth',3) % contour plot, 75% of max value | ||
+ | contour(X, Y, SS, [0.95 0.95], '-.','LineColor', [0.2 0.2 0.2] ,'LineWidth',3) % contour plot, 95% of max value | ||
+ | |||
+ | %% Set axes, legends and titles. | ||
+ | xlabel('\alpha_s','FontSize',30,'FontWeight','bold') | ||
+ | ylabel('\alpha_r','FontSize',30,'FontWeight','bold') | ||
+ | zlabel('1/\phi','FontSize',30,'FontWeight','bold') | ||
+ | title([name],'FontSize',24,'FontWeight','bold') | ||
+ | set(gca,'xscale', 'log','yscale', 'log') | ||
+ | set(gca,'LineWidth',2,'FontSize',24,'FontWeight','bold') | ||
+ | x_min = min(X(1, :)); | ||
+ | x_max = max(X(1, :)); | ||
+ | y_min = min(Y(:,1)); | ||
+ | y_max = max(Y(:,1)); | ||
+ | axis([x_min x_max y_min y_max]) | ||
+ | saveas(gcf,['Figure_XX''_SS.jpg']) | ||
+ | |||
+ | end | ||
+ | |||
+ | </pre> | ||
+ | |||
+ | ==Simulation== | ||
+ | Temporal simulation is performed using the Systems Biology Toolbox 2 [http://www.sbtoolbox.org/ www.sbtoolbox.org] environment with numerical integration using ode45. The catalytical model is specified by | ||
+ | |||
+ | <pre style="height: 200px;"> | ||
+ | ********** MODEL NAME | ||
+ | Dimensionless form. Catalytical. | ||
+ | |||
+ | ********** MODEL NOTES | ||
+ | Kinetic model of trap-RNA system. | ||
+ | Parameters are estimated from literature. | ||
+ | |||
+ | ********** MODEL STATES | ||
+ | d/dt(m) = 1 - m - k_s*alpha_m*m*s/(beta_m*beta_s) | ||
+ | d/dt(s) = (beta_s/beta_m)*(alpha_s/alpha_m - s - k_r*alpha_m * s * r /(beta_s*beta_r)) | ||
+ | d/dt(r) = (beta_r/beta_m)*(alpha_r/alpha_m - r) | ||
+ | |||
+ | m(0) = 1 | ||
+ | s(0) = 0 | ||
+ | r(0) = 0 | ||
+ | |||
+ | ********** MODEL PARAMETERS | ||
+ | alpha_m = 10 | ||
+ | alpha_s = 0 | ||
+ | alpha_r = 0 | ||
+ | beta_m = 0.0257 | ||
+ | beta_s = 0.0257 | ||
+ | beta_r = 0.0257 | ||
+ | k_s = 0.00082 | ||
+ | k_r = 0.0082 | ||
+ | |||
+ | ********** MODEL VARIABLES | ||
+ | |||
+ | ********** MODEL REACTIONS | ||
+ | |||
+ | ********** MODEL FUNCTIONS | ||
+ | |||
+ | ********** MODEL EVENTS | ||
+ | event = gt(time,1), alpha_s, 40 | ||
+ | event = gt(time,3), alpha_r, 200 | ||
+ | event = gt(time,6), alpha_r, 0 | ||
+ | ********** MODEL MATLAB FUNCTIONS | ||
+ | </pre> | ||
+ | |||
+ | The partly stoichiometric model is specified by | ||
+ | |||
+ | <pre style="height: 200px;"> | ||
+ | ********** MODEL NAME | ||
+ | Dimensionless form. Stoichiometric. | ||
+ | |||
+ | ********** MODEL NOTES | ||
+ | Kinetic model of trap-RNA system. | ||
+ | Parameters are estimated from literature. | ||
+ | |||
+ | ********** MODEL STATES | ||
+ | d/dt(m) = 1 - m - k_s*alpha_m*m*s/(beta_m*beta_s) | ||
+ | d/dt(s) = (beta_s/beta_m)*(alpha_s/alpha_m - s - k_r*alpha_m * s * r /(beta_s*beta_r)) | ||
+ | d/dt(r) = (beta_r/beta_m)*(alpha_r/alpha_m - r - k_r*alpha_m * s * r /(beta_s*beta_r)) | ||
+ | |||
+ | m(0) = 1 | ||
+ | s(0) = 0 | ||
+ | r(0) = 0 | ||
+ | |||
+ | ********** MODEL PARAMETERS | ||
+ | alpha_m = 1 | ||
+ | alpha_s = 0 | ||
+ | alpha_r = 0 | ||
+ | beta_m = 0.0257 | ||
+ | beta_s = 0.0257 | ||
+ | beta_r = 0.0257 | ||
+ | k_s = 0.00082 | ||
+ | k_r = 0.0082 | ||
+ | |||
+ | ********** MODEL VARIABLES | ||
+ | |||
+ | ********** MODEL REACTIONS | ||
+ | |||
+ | ********** MODEL FUNCTIONS | ||
+ | |||
+ | ********** MODEL EVENTS | ||
+ | event = gt(time,1), alpha_s, 40 | ||
+ | event = gt(time,3), alpha_r, 200 | ||
+ | event = gt(time,6), alpha_r, 0 | ||
+ | ********** MODEL MATLAB FUNCTIONS | ||
+ | </pre> | ||
+ | |||
+ | The script running simulation and generating figures. | ||
+ | |||
+ | <pre style="height: 200px;"> | ||
+ | %ksim runs a dynamic simulation using Systems Biology Toolbox 2 and plots | ||
+ | clear; | ||
+ | model = SBmodel('model7.txt'); %initialize model | ||
+ | |||
+ | %parameters | ||
+ | alpha_m = 1; | ||
+ | alpha_s = 40; %at induced | ||
+ | alpha_r = 200; %at induced | ||
+ | |||
+ | %%Simulation | ||
+ | time = 6; %running time. Glucose event at t = 6 | ||
+ | [out] = SBsimulate(model,time); | ||
+ | |||
+ | %%PLot | ||
+ | t = out.time; | ||
+ | m = out.statevalues(:,1); %m | ||
+ | s = out.statevalues(:,2); | ||
+ | r = out.statevalues(:,3); | ||
+ | |||
+ | %scale to max steady_state at induced levels | ||
+ | |||
+ | s = s .* (alpha_m/alpha_s); | ||
+ | r = r .* (alpha_m/alpha_r); | ||
+ | |||
+ | %ss_r = alpha_r/beta_r; | ||
+ | %r = r ./ss_r; | ||
+ | %Binary on off of s and r | ||
+ | %s = gt(t, 1); %Check model for event time | ||
+ | %r = gt(t, 3); | ||
+ | |||
+ | width = 4; %Line width | ||
+ | |||
+ | |||
+ | subplot(3,1,1) | ||
+ | h1 = plot(t,m); %handle | ||
+ | set(h1, 'color', [51/255, 102/255, 204/255], 'LineWidth',width) | ||
+ | set(gca, 'XTickLabel',[]) | ||
+ | |||
+ | subplot(3,1,2) | ||
+ | h2 = plot(t,s); | ||
+ | set(h2, 'color', [237/255, 28/255, 36/255],'LineWidth',width) | ||
+ | set(gca, 'XTickLabel',[]) | ||
+ | |||
+ | subplot(3,1,3) | ||
+ | h3 = plot(t,r,'g-'); | ||
+ | set(h3, 'color', [102/255, 204/255, 0], 'LineWidth',width) | ||
+ | </pre> | ||
{{:Team:DTU-Denmark/Templates/Standard_page_end}} | {{:Team:DTU-Denmark/Templates/Standard_page_end}} |
Latest revision as of 04:08, 22 September 2011
Matlab
Steady-state
For the steady-state analysis the following script calls a function that calculates the steady-state solution.
% Call file % Model ver. 7 % The model contains the analytical solution in regard to m*max/m for the 3 coupled differential equations, one for ChiXR (r), % ChiX (s), and ChiP (m) % This solution is only valid for p_s = 0! % In regard to Model ver. 5, now only alfa_s and alfa_r (and not the % relative amount in regard to alfa_m) are used as the axis. clc clear close all %% %% Steady state solution for ChiP %% Model Parameter % TRANSCRIPTION RATES: alfa_m= 2.57; % transcription rate of m (ChiP) From Overgaard fig1; alpha_m = beta_m * m' [nmol/time] alfa_s= 2.57; % transcription rate of m (ChiX) guess! % Degradation and dilution rates: beta_m= 0.0257; % background rate of degradation and dilution of m (ChiP mRNA) From Overgaard [1/min] beta_s= 0.0257; % background rate of degradation and dilution of s (ChiX sRNA) From Overgaard [1/min] beta_r= 0.0257; % background rate of degradation and dilution of r (ChiXR sRNA), guess - no data [1/min] % Constants: k_s= 0.000820; % From Overgaard [1/(nmol*min)] k_r= 0.00820; % Guess - no data [1/(nmol*min)] lambda_s = beta_s*beta_m/k_s; lambda_r = beta_s*beta_r/k_r; m_ss_max = alfa_m/beta_m; % the maximum steady state level of m [nmol] % Probability of co-degradation: p_r= 1; % Probability that r is codegraded with s %% Simulation N_s = 201; % Number of x values (s). N_r = 201; % Number of y values (r). parameter =[lambda_s lambda_r p_r]; [X, Y, SS_cat SS_stoch] = ss_simu_ver7(parameter, N_s, N_r); %% Plotting figure_no =1; % Figure number for easy naming of the figures. figure name=[' catalytic: \lambda_s=', num2str(lambda_s), ' \lambda_r=', num2str(lambda_r), ' p_r=', num2str(p_r)]; % part of the title ss_plot_single_ver7( X, Y, SS_cat, name ); saveas(gcf,['Figure',int2str(figure_no),'_SS_1_subplot.jpg']) figure name=[' stochiometric: \lambda_s=', num2str(lambda_s), ' \lambda_r=', num2str(lambda_r)]; % part of the title ss_plot_single_ver7( X, Y, SS_stoch, name ); saveas(gcf,['Figure',int2str(figure_no),'_SS_1_subplot.jpg'])
The following function calculates the steady-state given a set of parameter inputs.
function [ X, Y, SS_cat SS_stoch] = ss_simu_ver7( par, N_s, N_r ) %SIMU Simulates model_ver7 based on input parameters and N_s*N_r inputs % This model was made by the DTU 2011 iGEM team, consult our wiki for info % regarding deriving the model: https://2011.igem.org/Team:DTU-Denmark %% Parameters. lambda_s= par(1); lambda_r= par(2); p_r= par(3); alpha_s_min = 0.01; alpha_r_min = 0.0001; alpha_s_max = 10000; alpha_r_max = 100; alpha_s_no = N_s; alpha_r_no = N_r; SS_cat=zeros(alpha_r_no,alpha_s_no); SS_stoch=zeros(alpha_r_no,alpha_s_no); i=1; j=1; vector_s=logspace(log10(alpha_s_min), log10(alpha_s_max), alpha_s_no); vector_r=logspace(log10(alpha_r_min), log10(alpha_r_max), alpha_r_no); %% Calculate the steady state for the catalytical and stochiometric model for X_s = vector_s for X_r=vector_r alfa_s= X_s; alfa_r= X_r; SS_stoch(i,j)= 1/( (alfa_s*p_r - alfa_r - lambda_r + 2*p_r*lambda_s + sqrt((alfa_s*p_r - alfa_r - lambda_r)^2 + 4*p_r*alfa_s*lambda_r ))/(2*p_r*lambda_s) ); SS_cat(i,j)= 1/( 1 + alfa_s/lambda_s/(1 + alfa_r/lambda_r) ); i=i+1; end; i=1; j=j+1; end; [X,Y]= meshgrid(vector_s, vector_r); end
The following function plots steady-state values.
function ss_plot_single_ver7( X, Y, SS,name) %% Plots the output from call_model_ver7. % This model was made by the DTU 2011 iGEM team, consult our wiki for info % regarding deriving the model: https://2011.igem.org/Team:DTU-Denmark %% Various functions for plotting %SS_PLOT Plots steady-states as %surfc(X, Y, SS); % surface plot with contours %surf(X, Y, SS); % surface plot without contours %contourf(X,Y,SS,100) %meshc(X, Y, SS); % surface plot with contours pcolor(X, Y, SS); % shading flat %[interp, flat or faceted] %contour(X, Y, SS, 3) % contour plot, with 3 contours %% color map map = 1/255*[225 204 0; % DTU colormap with the 14 colors 225 153 0; 255 102 0 ; 255 0 0; 153 0 0; 255 0 153; 204 51 153; 153 0 102; 102 0 102; 102 0 153; 51 102 204; 51 204 255; 153 204 51; 102 204 0]; map2 = 1/255*[225 204 0; % DTU colormap with in-between colors 225 153 0; % 240 125 0; 255 102 0 ; % 255 50 0; 255 0 0; % 200 0 0; 153 0 0; % 200 0 75; 255 0 153;% 230 25 153 204 51 153;% 175 25 130; 153 0 102;% 130 0 102; 102 0 102;% 102 0 130; 102 0 153;% 75 50 175; 51 102 204;% 51 150 230; 51 204 255;% 102 204 153; 153 204 51;% 130 204 25; 102 204 0];% %colormap(map2) caxis ([0 1]); % specify the min and max value for the colorbar colorbar % add the color bar %% Add contours hold on contour(X, Y, SS, [0.05 0.05], '-.','LineColor', [0.2 0.2 0.2] ,'LineWidth',3) % contour plot, 5% of max value contour(X, Y, SS, [0.25 0.25], '-.', 'LineColor',[0.5 0.5 0.5] ,'LineWidth',3) % contour plot, 25% of max value contour(X, Y, SS, [0.5 0.5], '--k' ,'LineWidth',3) % contour plot, 50% maximum value contour(X, Y, SS, [0.75 0.75], '-.','LineColor', [0.5 0.5 0.5] ,'LineWidth',3) % contour plot, 75% of max value contour(X, Y, SS, [0.95 0.95], '-.','LineColor', [0.2 0.2 0.2] ,'LineWidth',3) % contour plot, 95% of max value %% Set axes, legends and titles. xlabel('\alpha_s','FontSize',30,'FontWeight','bold') ylabel('\alpha_r','FontSize',30,'FontWeight','bold') zlabel('1/\phi','FontSize',30,'FontWeight','bold') title([name],'FontSize',24,'FontWeight','bold') set(gca,'xscale', 'log','yscale', 'log') set(gca,'LineWidth',2,'FontSize',24,'FontWeight','bold') x_min = min(X(1, :)); x_max = max(X(1, :)); y_min = min(Y(:,1)); y_max = max(Y(:,1)); axis([x_min x_max y_min y_max]) saveas(gcf,['Figure_XX''_SS.jpg']) end
Simulation
Temporal simulation is performed using the Systems Biology Toolbox 2 [http://www.sbtoolbox.org/ www.sbtoolbox.org] environment with numerical integration using ode45. The catalytical model is specified by
********** MODEL NAME Dimensionless form. Catalytical. ********** MODEL NOTES Kinetic model of trap-RNA system. Parameters are estimated from literature. ********** MODEL STATES d/dt(m) = 1 - m - k_s*alpha_m*m*s/(beta_m*beta_s) d/dt(s) = (beta_s/beta_m)*(alpha_s/alpha_m - s - k_r*alpha_m * s * r /(beta_s*beta_r)) d/dt(r) = (beta_r/beta_m)*(alpha_r/alpha_m - r) m(0) = 1 s(0) = 0 r(0) = 0 ********** MODEL PARAMETERS alpha_m = 10 alpha_s = 0 alpha_r = 0 beta_m = 0.0257 beta_s = 0.0257 beta_r = 0.0257 k_s = 0.00082 k_r = 0.0082 ********** MODEL VARIABLES ********** MODEL REACTIONS ********** MODEL FUNCTIONS ********** MODEL EVENTS event = gt(time,1), alpha_s, 40 event = gt(time,3), alpha_r, 200 event = gt(time,6), alpha_r, 0 ********** MODEL MATLAB FUNCTIONS
The partly stoichiometric model is specified by
********** MODEL NAME Dimensionless form. Stoichiometric. ********** MODEL NOTES Kinetic model of trap-RNA system. Parameters are estimated from literature. ********** MODEL STATES d/dt(m) = 1 - m - k_s*alpha_m*m*s/(beta_m*beta_s) d/dt(s) = (beta_s/beta_m)*(alpha_s/alpha_m - s - k_r*alpha_m * s * r /(beta_s*beta_r)) d/dt(r) = (beta_r/beta_m)*(alpha_r/alpha_m - r - k_r*alpha_m * s * r /(beta_s*beta_r)) m(0) = 1 s(0) = 0 r(0) = 0 ********** MODEL PARAMETERS alpha_m = 1 alpha_s = 0 alpha_r = 0 beta_m = 0.0257 beta_s = 0.0257 beta_r = 0.0257 k_s = 0.00082 k_r = 0.0082 ********** MODEL VARIABLES ********** MODEL REACTIONS ********** MODEL FUNCTIONS ********** MODEL EVENTS event = gt(time,1), alpha_s, 40 event = gt(time,3), alpha_r, 200 event = gt(time,6), alpha_r, 0 ********** MODEL MATLAB FUNCTIONS
The script running simulation and generating figures.
%ksim runs a dynamic simulation using Systems Biology Toolbox 2 and plots clear; model = SBmodel('model7.txt'); %initialize model %parameters alpha_m = 1; alpha_s = 40; %at induced alpha_r = 200; %at induced %%Simulation time = 6; %running time. Glucose event at t = 6 [out] = SBsimulate(model,time); %%PLot t = out.time; m = out.statevalues(:,1); %m s = out.statevalues(:,2); r = out.statevalues(:,3); %scale to max steady_state at induced levels s = s .* (alpha_m/alpha_s); r = r .* (alpha_m/alpha_r); %ss_r = alpha_r/beta_r; %r = r ./ss_r; %Binary on off of s and r %s = gt(t, 1); %Check model for event time %r = gt(t, 3); width = 4; %Line width subplot(3,1,1) h1 = plot(t,m); %handle set(h1, 'color', [51/255, 102/255, 204/255], 'LineWidth',width) set(gca, 'XTickLabel',[]) subplot(3,1,2) h2 = plot(t,s); set(h2, 'color', [237/255, 28/255, 36/255],'LineWidth',width) set(gca, 'XTickLabel',[]) subplot(3,1,3) h3 = plot(t,r,'g-'); set(h3, 'color', [102/255, 204/255, 0], 'LineWidth',width)