Team:Tianjin/Project

From 2011.igem.org

Revision as of 17:37, 3 October 2011 by Toushirou 1220 (Talk | contribs)

Template:Https://2011.igem.org/Team:Peking S/bannerhidden Template:Https://2011.igem.org/Team:Peking S/back2 Untitled

&nbsp. [1] I. Dilova, E. Easlon, S.-J. Lin. Calorie restriction and the nutrient sensing signaling pathways. Cell. Mol. Life Sci. 2007, 64: 752 - 767.
[2] H. Lempiäinen, A. Uotila, Jo. Urban et al. Sfp1 interaction with TORC1 and Mrs6 reveals feedback regulation on TOR signaling. Molecular Cell. 2009, 33: 704 - 716.
[3] Y.-X. Wang, N. L. Catlett, L. S. Weisman. Vac8p, a vacuolar protein with armadillo repeats, functions in both vacuole inheritance and protein targeting from the cytoplasm to vacuole. The Journal of Cell Biology. 1998, 140(5): 1064 - 1074.
[4] J. Urban,1 A. Soulard, A. Huber et al. Sch9 is a major target of TORC1 in Saccharomyces cerevisiae. Molecular Cell 2007, 26: 663 - 674.
[5] J. R. Rohde1, R. Bastidas, R. Puria et al. Nutritional control via TOR signaling in Saccharomyces cerevisiae. Current Opinion in Microbiology 2008, 11: 153 - 160.
[6] M. Wei, P. Fabrizio, F. Madia et al. Tor1/Sch9-regulated carbon source substitution is as effective as calorie restriction in life span extension. PLoS Genetics 2009, 5(5): 1 - 15.
[7] C. M. Alarcon, M. E. Cardenas, J. Heitman. Mammalian RAFT1 kinase domain provides rapamycin-sensitive TOR function in yeast. Genes Dev. 1996, 10: 279 - 288.
[8] I. Georis, J. J. Tate, A. Feller. Intranuclear function for protein phosphatase 2A: Pph21 and Pph22 are required for rapamycin-induced GATA factor binding to the DAL5 promoter in Yeast. Molecular and Cellular Biology, 2011, 31(1): 92 - 104.
[9] S. Wullschleger, R. Loewith, W. Oppliger et al. Molecular organization of target of Rapamycin Complex 2. The Journal of Biological Chemistry, 2005, 280(35): 30697 - 30704.
[10] E. Jacinto. What Controls TOR? Life, 2008, 60(8): 483 - 496.
[11] A. Adami, B. García-Álvarez, E. Arias-Palomo et al. Structure of TOR and its complex with KOG1. Molecular Cell 2007, 27: 509 - 516.
[12] L. Kuepfer, M. Peter, U. Sauer et al. Ensemble modeling for analysis of cell signaling dynamics. Nature Biotechnology 2007, 25(9): 1001 - 1006.
[13] B. Smets, R. Ghillebert, P. D. Snijder et al. Life in the midst of scarcity: adaptations to nutrient availability in Saccharomyces cerevisiae. Curr. Genet. 2010, 56: 1 - 32.
[14] M. A. Romanos, C. A. Scorer, J. J. Clare. Foreign gene expression in Yeast: a review. Yeast 1992, 8: 423 - 488.
[15] A. G. Hinnebusch, K. Natarajan. Gcn4p, a master regulator of gene expression, is controlled at multiple levels by diverse signals of starvation and stress. Eukaryotic Cell 2002, 1(1): 22 - 32.
[16] A. G. Hinnebusch. Translational regulation of Yeast GCN4. The Journal of Biological Chemistry 1997, 272(35): 21661 - 21664.
[17] B. Scherens, A. Feller, F. Vierendeels et al. Identification of direct and indirect targets of the Gln3 and Gat1activators by transcriptional profiling in response to nitrogen availability in the short and long term. FEMS Yeast Res 2006, 6: 777 - 791.
[18] J. L. Crespo, T. Powers, B. Fowler et al. The TOR-controlled transcription activators GLN3, RTG1, and RTG3 are regulated in response to intracellular levels of glutamine. PNAS 2002, 99(10): 6784 - 6789.
[19] S. M. Kingsman, D. Cousens, C. A. Stanway et al. High-efficiency Yeast expression vectors based on the promoter of the phosphoglycerate kinase gene. Methods in Enzymology 1990, 185(27): 329.
[20] M. Brunner, H. Bujard. Promoter recognition and promoter strength in the Escherichia coli system. The EMBO Journal 1987, 6(10): 3139 - 3144.
[21] T. Kodadek, D. Sikder, K. Nalley. Keeping transcriptional activators under control. Cell 2006, 127: 261 - 264.
[22] K. Natarajan, M. R. Meyer, B. M. Jackson et al. Transcriptional profiling shows that Gcn4p is a master regulator of gene expression during amino acid starvation in Yeast. Molecular and Cellular Biology 2001, 21(13): 4347 - 4368.
[23] A. G. Hinnebusch. Translational regulation of GCN4 and the general amino acid control of Yeast. Annual Review of Microbiology 2005, 59: 407 - 450.
[24] E. Nevoigt, J. Kohnke, C. R. Fischer et al. Engineering of promoter replacement cassettes for fine-tuning of gene expression in Saccharomyces cerevisiae. Applied and Encironmental Microbiology 2006, 72(8): 5266 - 5273.
[25] K.EJ Tyo, K. Kocharin, J. Nielsen. Toward design-based engineering of industrial microbes. Current Opinion in Microbiology 2010, 13: 255–262.
[26] Y. Ohne, T. Takahara, R. Hatakeyama et al. Isolation of hyperactive mutants of mammalian target of rapamycin. The Journal of Biological Chemistry 2008, 283(46): 31861 - 31870.
[27] J. Urano, T. Sato, T. Matsuo et al. Point mutations in TOR confer Rheb-independent growth in fission yeast and nutrient-independent mammalian TOR signaling in mammalian cells. PNAS 2007, 104(9): 3514 - 3519.
[28] T. W. Sturgill, M. N. Hall. Activating mutations in TOR are in similar structures as oncogenic mutations in PI3KCα. ACS Chemical Biology 2009, 4(12): 999 - 1015.
[29] M. Hardt, N. Chantaravisoot, F. Tamanoi. Activating mutations of TOR (target of rapamycin). Genes to Cells 2011, 16: 141–151.
[30] E. Palmqvist, B. Hahn-Hägerdal. Fermentation of lignocellulosic hydrolysates. I: inhibition and detoxification. Bioresource Technology 2000, 74: 17 - 24.
[31] E. Palmqvist, B. Hahn-Hägerdal. Fermentation of lignocellulosic hydrolysates. II: inhibition and detoxification. Bioresource Technology 2000, 74: 25 - 33.
[32] S. I. Mussatto, I. C. Roberto. Alternatives for detoxification of diluted-acid lignocellulosic hydrolyzates for use in fermentative processes: a review. Bioresource Technology 2004, 93: 1 - 10.
[33] Z. L. Liu. Molecular mechanisms of yeast tolerance and in situ detoxification of lignocellulose hydrolysates. Appl. Microbiol. Biotechnol. 2011, 90: 809 - 825.
[34] A. Breitkreutz, H.Choi, J. R. Sharom et al. A global protein kinase and phosphatase interaction network in Yeast. Science 2010, 328: 1043 - 1046.
[35] Z. D. Sharp. Aging and TOR: interwoven in the fabric of life. Cell. Mol. Life Sci. 2011, 68: 587 - 597.
[36] D. Carmona-Gutierrez, T. Eisenberg, S Büttner et al. Apoptosis in yeast: triggers, pathways, subroutines. Cell Death and Differentiation 2010, 17: 763 - 773.
[37] P. Fabrizio, V. D. Longo. Chronological aging-induced apoptosis in yeast. Biochem. Biophys. Acta. 2008, 1783(7): 1280 - 1285.
[38] D. S. Evansa, P. Kapahic, W. - C. Hsueha et al. TOR signaling never gets old: aging, longevity and TORC1 activity. Ageing Research Reviews 2011, 10: 225 - 237.
[39] B. Almeida, S. Ohlmeier, A. J. Almeida et al. Yeast protein expression profile during acetic acid-induced apoptosis indicates causal involvement of the TOR pathway. Proteomics 2009, 9: 720 - 732.
[40] C. J. Bashor, N. C. Helman, S. Yan et al. Using engineered scaffold interactions to reshape MAP kinase pathway signaling dynamics. Science 2008, 319: 1539 - 1543.
[41] E. Nevoigt. Progress in metabolic engineering of Saccharomyces cerevisiae. Microbiology and Molecular Biology Reviews 2008, 72(3): 379 - 412.