Team:NTNU Trondheim/Safety

From 2011.igem.org

(Difference between revisions)
(Risk Assessments)
Line 1: Line 1:
-
 
{{:Team:NTNU_Trondheim/NTNU_header}}
{{:Team:NTNU_Trondheim/NTNU_header}}
-
 
-
 
-
 
=Safety=
=Safety=

Revision as of 09:19, 12 July 2011


Safety

Lab safety

All our lab-team members attended a mandatory general safety course when we started university. We were schooled in lab-safety, fire-safety and first aid including CPR. In addition the Institute for Biotechnology at NTNU who are lending us their labs, gave us a thorough guide through all their labs and instructions on their own safety procedures, such as autoclaving waste and disposal of hazardous chemicals when we started working on the iGEM project.

We of course follow general lab safety and wear lab-coats, disposable gloves and safety-glasses when working with recombinant DNA and bacteria. When running gels, we use GelRed instead of ethidium bromide, as it is said not to penetrate cell membranes and thus should not be able to work as a mutagen. However, to be on the safe side, we always wear nitrile gloves when working with GelRed.

Assessment of our project and BioBricks

None of the bacteria and BioBrick parts used or made in this project raise any serious safety issues. Our activity and use of biological material corresponds to class 1 in the Norwegian regulation for protection against exposure to biological agents and use of gene modified organisms. Class 1 cover use that does not involve any significant risk for human's and animal's health and environment. This corresponds to WHO risk group 1 in the classification of infective microorganisms.

Our aim in this project is to make bacteria that fluorescence when stressed. This is not a property that cause any harm or is related to the organisms pathogenicity, and the strains of E. coli used (DH5alpha) is non-pathogenic to people of normal health. Standard lab procedures like the use of lab coat, gloves and safety glasses are followed to minimize the risk even further. Bacteria and plasmids with antibiotic properties are used, and could in theory be of health and environmental concern if not handled properly. To overcome any possible safety issue in relation to the points described above, all biological material and equipment that has been in contact with this biological material, is autoclaved before disposed.

Risk Assessments

The following risk assessments for the lab procedures we are using have been made by the institute’s HSE group. The grading system for personal and environmental risk assesments ranges from A to E, where A is no/very low risk, B is low risk, C is moderate risk, D is high risk and E is very high risk:

Activity Safety Procedures Personal risk Env. risk Comment
Agarose gel electrophoresis, (GelRed) Nitrile gloves, protective eyewear (with UV filter), face shield when needed.

Gelred used for staining

GelRed: Unknown, UV: B A Gelred is said not to penetrate cell membranes, and thus should not act as mutagen even if it is DNA-binding. Gloves also minimize the risk for exposure. UV damages on unprotected skins/eyes if instructions not followed
Antibiotic-stock solution, make and use of Gloves, handle powder only inside fume hood A B May cause allergic reactions if instructions not followed. May causlead to multi-resistant bacteria if not disposed correctly.
Autoclave Thermoresistant gloves

Eyeprotection lab, Instructions posted for not opening autoclave too early and for not overfilling bottles or closing their lids completely.

C A Rapid pressure fall due to opening the autoclave to soon my cause hot liquid burns on eye or skin. Will not happen if instructions are followed.
Bacteria class 1 and recombinant bacteria Autoclave accessible. Inactivation of genmanipulated bacteria in contaminated material and waste. Labcoat mandatory. Lab bench surfaces resistant to water, acid, alkali, solvents, disinfective agants, decontaminating agents and easy to clean. Transport between labs only in closed containers. Good microbiological practice. A A Risk include Release of GMO to environment, bacterial infections. Low because DH5 alpha are crippled.
Use of open flames – (e.g. sterilization with bunsen burners) Bunsen burner must not be left burning B A Risks include skin burns and fire. New rules on handling installed.
General lab work Safety rules according to risk assessment - - No injuries requiring more than simple first aid in these laboratories for the past 5 years, the present rutines seem sufficient
DNA/RNA isolation and purification Use gloves and eyeprotection during steps including NaOH. Use fume hoods for procedures containing chloroform, phenol or if it is indicated in the kit manual C A Phenol-chloroform mix requires the work in a ventilation hood only. All waste should be placed in a special box for hazardous materials.
Preparation of medias for growing bacteria According to MSDSs of relevant chemicals - - Depends on the chemicals
PCR Fume hood when DMSO is added A A PCR-machine should be in ventilation hood when DMSO is added, use lab coat and gloves
pH-adjustments Nitril gloves, eyewear, shoes/shoe bags with protection agains acid/base spill, sufficient ventilation (hood/”cap”) B A Eye-protection and lab coat
Sentrifugation (Sorvall + table) Accurate balancing, accurate attachment of rotor, not exceed maximal G-forces fore each type of tube C A Danger is damage caused by loose rotor
Supercompetent or electrocompetent cells, making of Eye protection, gloves and protective shoes/shoe bags when handling liquid nitrogen or ethanol/dry ice bath. Shoes must be easy to take off in case of spill into (never use rubber boots) C A Conducted with extreme caution, and using eye-protection and gloves.
Ventilation hoods, use of Opening minimized when not in use, correct settings when in used for protection C A Exposure to hazardous chemicals due to unsufficient airflow (effects on local hood or other hoods). Can be prevented by maintaining sufficient airflow