Team:Imperial College London/Project Auxin Assembly

From 2011.igem.org

(Difference between revisions)
Line 12: Line 12:
<p> We assembled our four auxin fragments along with the promoter containing backbone using CPEC. CPEC (Circular Polymerase Extension Cloning) is a primer-independent PCR assembly technique which relies on overlaping sequences between each part to be assembled. With a denaturing step, the double stranded DNA is melted, allowing compatible single stranded ends of each part to join. For this reason it is essential that the parts are designed with homologous ends (the fragments we used were designed with 50 bp overlaps). The annealed overlapping ends then serve as primers for polymerase extension to join the parts into a seamless construct. </p>
<p> We assembled our four auxin fragments along with the promoter containing backbone using CPEC. CPEC (Circular Polymerase Extension Cloning) is a primer-independent PCR assembly technique which relies on overlaping sequences between each part to be assembled. With a denaturing step, the double stranded DNA is melted, allowing compatible single stranded ends of each part to join. For this reason it is essential that the parts are designed with homologous ends (the fragments we used were designed with 50 bp overlaps). The annealed overlapping ends then serve as primers for polymerase extension to join the parts into a seamless construct. </p>
<p>We were firsty time lucky with CPEC! We quickly verified the assembly by doing a PCR of the CPEC assembly with our standard sequencing primers which anneal to the promoter and terminator of the pC13b backbone, so we would expect it to PCR the insert which should be around 4 kb if it worked. We also transformed cells with the assembled construct and performed a colony PCR. The PCR products were run on an analytical agarose gel (shown below) and all of the bands corresponded to the expected sizes.</p>  
<p>We were firsty time lucky with CPEC! We quickly verified the assembly by doing a PCR of the CPEC assembly with our standard sequencing primers which anneal to the promoter and terminator of the pC13b backbone, so we would expect it to PCR the insert which should be around 4 kb if it worked. We also transformed cells with the assembled construct and performed a colony PCR. The PCR products were run on an analytical agarose gel (shown below) and all of the bands corresponded to the expected sizes.</p>  
-
<p> DNA was mini-prepped from colonies and sequenced by Eurofins. The sequences came back positive so we could move on and start characterizing the auxin construct.</p> <p>  <img src=https://static.igem.org/mediawiki/2011/a/ad/ICL_CPEC_assembly_auxin_fragments_and_verifying_PCR.jpg width=200px/>
+
<p> DNA was mini-prepped from colonies and sequenced by Eurofins. The sequences came back positive so we could move on and start characterizing the auxin construct.</p> <p>  <img src=https://static.igem.org/mediawiki/2011/8/89/ICL_AuxinCPECanalyticalgel.png width=200px/>
<img src=https://static.igem.org/mediawiki/2011/1/18/ICL_Colony_PCR_CPEC.jpg width=500px/>
<img src=https://static.igem.org/mediawiki/2011/1/18/ICL_Colony_PCR_CPEC.jpg width=500px/>
<img src=https://static.igem.org/mediawiki/2011/4/4f/ICL_Colony_PCR_controls.jpg width=200px/>
<img src=https://static.igem.org/mediawiki/2011/4/4f/ICL_Colony_PCR_controls.jpg width=200px/>

Revision as of 11:01, 16 September 2011




Module 2: Auxin Xpress

Auxin, or Indole 3-acetic acid (IAA), is a plant growth hormone which is produced by several soil bacteria. We have taken the genes encoding the IAA-producing pathway from Pseudomonas savastanoi and expressed them in Escherichia coli. Following chemotaxis towards the roots and uptake by the Phyto Route module, IAA expression will promote root growth with the aim of improving soil stability.




Assembly

We wish to build a single expression plasmid that can express IaaH and IaaM. While this task can be summarised in one sentence its execution is not as short. The first problem lies in the size of these two enzymes which both exceed 1kbp making their synthesis a problem. We therefore created a new standard for biobrick assembly to tackle this issue. We broke up these large sequences into four fragments that were ordered at the end of week 3.

CPEC Assembly

We assembled our four auxin fragments along with the promoter containing backbone using CPEC. CPEC (Circular Polymerase Extension Cloning) is a primer-independent PCR assembly technique which relies on overlaping sequences between each part to be assembled. With a denaturing step, the double stranded DNA is melted, allowing compatible single stranded ends of each part to join. For this reason it is essential that the parts are designed with homologous ends (the fragments we used were designed with 50 bp overlaps). The annealed overlapping ends then serve as primers for polymerase extension to join the parts into a seamless construct.

We were firsty time lucky with CPEC! We quickly verified the assembly by doing a PCR of the CPEC assembly with our standard sequencing primers which anneal to the promoter and terminator of the pC13b backbone, so we would expect it to PCR the insert which should be around 4 kb if it worked. We also transformed cells with the assembled construct and performed a colony PCR. The PCR products were run on an analytical agarose gel (shown below) and all of the bands corresponded to the expected sizes.

DNA was mini-prepped from colonies and sequenced by Eurofins. The sequences came back positive so we could move on and start characterizing the auxin construct.

Gel 8: The first two lanes show that CPEC assembly of four auxin fragments at ~1kb each in a backbone of about 2kb. Lane one contains the assembled construct at ~6 kb and lane 2 contains the negative control assembly of backbone vector with no insert at ~2kb. The following two lanes show the analytical PCR of the CPEC assembled product with standard biobrick primers to PCR our the assembled auxin fragments. The first well shows the auxin assembly at ~4kb and the second (negative control) shows no PCR product because no insert is present. Gel 9: Colony PCR with standard biobrick primers of CPEC assembled auxin fragments showing the desired assembly size of about 4 kb. Gel 10: Colony PCR of negative control colonies (backbone vector 8 only and no insert) and positive control colony PCR of the same vector 8 but the entire plasmid. This result shows that the DpnI digest of PCRd backbone vector 8 was not completely efficient as some complete plasmid remains, but this residual amount did not hinder assembly.