Team:EPF-Lausanne/Tools/Microfluidics/HowTo2

From 2011.igem.org

(Difference between revisions)
(A basic microfluidics control setup)
Line 3: Line 3:
[[File:EPFL-Basic-setup.jpg|thumb|right|300px|A basic computer-controlled microfluidics setup. Note the compressed air input split into two sides, both fed through a pressure regulator. The left side is the low-pressure manifold for the flow layer. The right side is the high-pressure solenoid array for the control layer.]]
[[File:EPFL-Basic-setup.jpg|thumb|right|300px|A basic computer-controlled microfluidics setup. Note the compressed air input split into two sides, both fed through a pressure regulator. The left side is the low-pressure manifold for the flow layer. The right side is the high-pressure solenoid array for the control layer.]]
-
Microfludic chips are nothing but a piece of moulded rubber. To actually get use them, an external setup of tubing, compressed air, and valves is needed to flow in fluids and actuate the on-chip valves. To see what's happening, you'll also need some form of microscope. No matter the application of the chip, whether it is designed to study fluid mechanics, to characterise protein-DNA interaction, or even cultivate bacteria and nematodes, the external setup remains essentially the same.
+
Microfludic chips are nothing but a piece of moulded rubber. To actually get something out of them, an external setup of tubing, compressed air, and valves is needed to flow in fluids and actuate the on-chip valves. To see what's happening, you'll also need some form of microscope. No matter the application of the chip, whether it is designed to study fluid mechanics, to characterise protein-DNA interaction, or even cultivate bacteria and nematodes, the external setup remains essentially the same.
== A basic microfluidics control setup ==
== A basic microfluidics control setup ==

Revision as of 12:04, 19 September 2011