Team:Dundee/Project

From 2011.igem.org

(Difference between revisions)
Line 42: Line 42:
<div class="largepost2">
<div class="largepost2">
                       <h2>Project Description</h2>
                       <h2>Project Description</h2>
-
                       <h2>In the Beginning…</h2>
+
                       <h3>In the Beginning…</h3>
<p>Over millennia, eukaryotic cells have evolved sophisticated organelles, which enabled them to partition their cytoplasmic contents into functional sectors (e.g. the nucleus for storage of genetic material). Such compartmentalisation allows greater efficiency of cellular processes, where each organelle is allocated a set of specific metabolic tasks. Some prokaryotes have also developed a method of forming intracellular subdivisions called bacterial microcompartments (BMCs) by expressing a set of proteins that ‘cage in’ a reaction pathway to make it more efficient. A wide range of metabolic pathways are isolated by BMCs, from carbon dioxide fixation pathways to organic compound degradation. Despite these varying functions, the proteinaceous BMC shells show considerable homology as a result of a highly conserved protein domains.(1)</p>
<p>Over millennia, eukaryotic cells have evolved sophisticated organelles, which enabled them to partition their cytoplasmic contents into functional sectors (e.g. the nucleus for storage of genetic material). Such compartmentalisation allows greater efficiency of cellular processes, where each organelle is allocated a set of specific metabolic tasks. Some prokaryotes have also developed a method of forming intracellular subdivisions called bacterial microcompartments (BMCs) by expressing a set of proteins that ‘cage in’ a reaction pathway to make it more efficient. A wide range of metabolic pathways are isolated by BMCs, from carbon dioxide fixation pathways to organic compound degradation. Despite these varying functions, the proteinaceous BMC shells show considerable homology as a result of a highly conserved protein domains.(1)</p>
   
   

Revision as of 12:27, 18 August 2011

Project Description

In the Beginning…

Over millennia, eukaryotic cells have evolved sophisticated organelles, which enabled them to partition their cytoplasmic contents into functional sectors (e.g. the nucleus for storage of genetic material). Such compartmentalisation allows greater efficiency of cellular processes, where each organelle is allocated a set of specific metabolic tasks. Some prokaryotes have also developed a method of forming intracellular subdivisions called bacterial microcompartments (BMCs) by expressing a set of proteins that ‘cage in’ a reaction pathway to make it more efficient. A wide range of metabolic pathways are isolated by BMCs, from carbon dioxide fixation pathways to organic compound degradation. Despite these varying functions, the proteinaceous BMC shells show considerable homology as a result of a highly conserved protein domains.(1)

twitter bird