Team:Wageningen UR/Project/DevicesSetup

From 2011.igem.org

(Difference between revisions)
Dorett (Talk | contribs)
(Created page with "<html> <head> <style type="text/css"> ul li a.currentlink3 { color: black !important; } ul li a.currentlinktop3 { color: #63a015 !important; } ul li a.currentlinktop4 { color:...")
Newer edit →

Revision as of 11:32, 19 September 2011

Building a Synchronized Oscillatory System

Setup

The main concern for the setup of the device was to be able to gain control over the flow rate. According to Bernoulli's principle, the velocity of a fluid can be influenced by varying the height of the medium bottle. This approach was also used in the paper cited above. Figure X. shows the corresponding setup and the applying equations.

Scheme setup1 WUR.png
Setup1 WUR.JPG


Equations bernoulli WUR.png

Fig.X: Setup of the device using Bernoulli's principle to control the velocity of the fluid.

However, as mentioned on the modeling page, the dimensions of our fluidic device did not allow the aimed for precise control over the flow rate. This was tested both by calculating some theoretical values applicable for our device and running pilot experiments with water. Furthermore the obtained flow rates were also much faster than the flow rates in which oscillations were to be expected. This was solved by expanding our setup to incorporate the use of a syringe pump which controls the inflow. Figure X+1 shows the new setup.

Scheme setup2 WUR.png

Fig.X+1: Setup of the device using a pump to control the velocity of the fluid.


back to top