Team:Wisconsin-Madison/umad
From 2011.igem.org
Line 172: | Line 172: | ||
<a href="https://2011.igem.org/Team:Wisconsin-Madison/teamoverview">Overview</a> | <a href="https://2011.igem.org/Team:Wisconsin-Madison/teamoverview">Overview</a> | ||
<a href="https://2011.igem.org/Team:Wisconsin-Madison/teammembers">Members</a> | <a href="https://2011.igem.org/Team:Wisconsin-Madison/teammembers">Members</a> | ||
- | <a href="https://2011.igem.org/Team:Wisconsin-Madison/ | + | <a href="https://2011.igem.org/Team:Wisconsin-Madison/teamadvisors">Advisors</a> |
<a href="https://2011.igem.org/Team:Wisconsin-Madison/teamsponsors">Sponsors</a> | <a href="https://2011.igem.org/Team:Wisconsin-Madison/teamsponsors">Sponsors</a> | ||
</div> | </div> |
Revision as of 15:24, 8 August 2011
Project Abstract
We have found regulatory systems which respond to each of the biofuels of interest, and are using standard BioBrick assembly to create E. coli strains which can be used to perform fluorescence-based assays. By using fluorescent biosensors, we hope to lower costs (in both equipment and cost-per-sample) while maintaining a high degree of accuracy. In the interest of creating robust and accurate assays, we are also attempting to increase the magnitude and range of the linear fluorescence response through directed evolution. We hope to leverage multiple selections to both decrease basal fluorescence and increase the point where the response becomes saturated.
As a more direct approach to increasing microbial biofuel yields, we are also pursuing the use of bacterial microcompartments (BMCs) as scaffolding for key enzymes. We hope that through localizing crucial anabolic enzymes, as well as the beginning of our sensing cascades, to the BMC surfaces, we can increase fuel titers as well as our reliability in accurately sensing them.
|
|