Team:uOttawa/Project
From 2011.igem.org
(Difference between revisions)
Line 4: | Line 4: | ||
<hr /> | <hr /> | ||
- | <b>Introduction</b> | + | <p><b>Introduction</b></p> |
2010 was a great year for the uOttawa team, we successfully streamlined protocols and methods for manipulating the budding yeast <i>S. cerevisiae</i>. We submitted a number of important BioBricks™ to the registry. Among the submissions were the two drug selection cassettes NatMX and KanMX6, a novel cloning-vector that allows for rapid integration of BioBricks™ into the Ade4 locus of <i>S. cerevisiae</i>, as well as a range of promoters and repressors that function in yeast. Building off of last year’s successes, the uOttawa Team focused primarily on three fundamental technologies. | 2010 was a great year for the uOttawa team, we successfully streamlined protocols and methods for manipulating the budding yeast <i>S. cerevisiae</i>. We submitted a number of important BioBricks™ to the registry. Among the submissions were the two drug selection cassettes NatMX and KanMX6, a novel cloning-vector that allows for rapid integration of BioBricks™ into the Ade4 locus of <i>S. cerevisiae</i>, as well as a range of promoters and repressors that function in yeast. Building off of last year’s successes, the uOttawa Team focused primarily on three fundamental technologies. | ||
Revision as of 03:14, 29 September 2011
Project Overview
Introduction
2010 was a great year for the uOttawa team, we successfully streamlined protocols and methods for manipulating the budding yeast S. cerevisiae. We submitted a number of important BioBricks™ to the registry. Among the submissions were the two drug selection cassettes NatMX and KanMX6, a novel cloning-vector that allows for rapid integration of BioBricks™ into the Ade4 locus of S. cerevisiae, as well as a range of promoters and repressors that function in yeast. Building off of last year’s successes, the uOttawa Team focused primarily on three fundamental technologies.