Yeast Colony PCR protocol

Junbiao Dai, Johns Hopkins Medical Institute

- 1. Aliquot 20ul of dH20 into each well in 96-well plates
- 2. Use pipette tips to pick up some yeast cells from agar plates (1-2ul will be more than enough) and transfer into above plates
- 3. Prepare PCR master mixture as following (put the tubes on ice):

		1x rxtn	120x (for 96 rxtns)
a.	10x ExTaq buffer	1.5ul	180ul
b.	dNTP mixture	1.2ul	144ul
c.	20% triton X-100	0.75ul	90ul
d.	Primers (20uM)	0.0375ul each	4.5ul each
e.	Ex Taq	0.0075ul	9ul
f.	dH2O	6.5ul	780ul

- 4. Aliquot 10ul of PCR master mix into each well in 96-well PCR plate. Put the PCR plates on ice
- 5. Use 12-channel pipette to mix the yeast cells and transfer 5ul into the PCR plates. Mix well by pipetting up and down several times.
- 6. Run the PCR reaction using the following program
 - a. 94C 5min
 - b. 94C 20sec
 - c. 55C 20sec
 - d. 72C 45sec
 - e. go to b for 35 times
 - f. 72C 5min
 - g. 4C for ever
- 7. Add some loading buffer into each well and load all of the reaction mix into 1.5% agarose gel. Run at 140V for 30min.
- 8. Take pictures and enjoy your perfect knockout!!!!!

Notes:

- 1. The primer pairs used for yeast deletion project worked very well. I use two pair of primers to check my deletion routinely: Primer A and KanB (positive); Primer A and primer B (negative). Load the pairs next to each other for comparison.
- 2. Unlike what was described in Dan Gottschling's lab protocol page, it seems that adding more cells helps to generate a much more intense band. Keep the PCR mixture on ice before putting into PCR machine also helps.
- 3. Same volume can also be used in 384-well PCR plate. Worked well too