Team:UC Davis/PartFamilies

From 2011.igem.org

(Difference between revisions)
Line 43: Line 43:
Mutagenesis creates the genetic variation that leads to changes in part behavior. This can be achieved in a number of ways, but we designed this process with the use of our suped-up <a href=https://2011.igem.org/Team:UC_Davis/Protocols#ER-PCR>error-prone PCR protocol</a> in mind. This protocol has been optimized specifically for creating mutants of BrioBrick parts: it uses standard VF2 and VR primers, produces a large number of mutations per reaction for rapid library generation and visual screening, and it uses materials that are already present in most iGEM team labs.<br><br>
Mutagenesis creates the genetic variation that leads to changes in part behavior. This can be achieved in a number of ways, but we designed this process with the use of our suped-up <a href=https://2011.igem.org/Team:UC_Davis/Protocols#ER-PCR>error-prone PCR protocol</a> in mind. This protocol has been optimized specifically for creating mutants of BrioBrick parts: it uses standard VF2 and VR primers, produces a large number of mutations per reaction for rapid library generation and visual screening, and it uses materials that are already present in most iGEM team labs.<br><br>
-
Since the degree of mutation required to produce desirable levels of part phenotype variation is not generally known before this step has been completed, we suggest performing several rounds of mutagenic PCR in succession, saving the products from each reaction, then digesting, ligating and transforming the results separately. This will produce plates of mutant transformants at different degrees of mutation from wild-type. <br><br>
+
Since the degree of mutation required to produce desirable levels of phenotype variation is not generally known before this step has been completed, we suggest performing several rounds of mutagenic PCR in succession, saving the products from each reaction, then digesting, ligating and transforming the results separately. This will produce plates of mutant transformants at different degrees of mutation from wild-type. <br><br>
We found that our protocol produces about 1 to 7 base pair mutations per round of error-prone PCR, which was enough to visually identify GFP (~800bp) mutants on transformation plates after just one round and LacI promoter mutants (~200bp) after three rounds. We also observed a qualitative increase in successfully transformed colonies when we used a PCR purification kit on our PCR products before cutting them with restriction enzymes.
We found that our protocol produces about 1 to 7 base pair mutations per round of error-prone PCR, which was enough to visually identify GFP (~800bp) mutants on transformation plates after just one round and LacI promoter mutants (~200bp) after three rounds. We also observed a qualitative increase in successfully transformed colonies when we used a PCR purification kit on our PCR products before cutting them with restriction enzymes.

Revision as of 22:15, 23 October 2011

Our Sponsors

Start a Family

Got a favorite BioBrick? Check our our process for expanding basic parts into part families.

Criteria

View our judging criteria for iGEM 2011 here.

Make Your Own Part Families

Part families are a great asset to the Parts Registry. Our process for expanding basic parts into part families is quick, easy, and prioritizes the use of materials that most iGEM teams already have on hand. By following these steps, you can improve the utility of your favorite part and contribute to a strong foundation of useful parts for synthetic biologists around the world.

Our Method

Our part family expansion process is broken down into four major steps:

Part Selection: Choose your basic part of interest and obtain a DNA sample.
Mutagenesis: Create a library of mutants from your basic part.
Screening: Select a range of mutants that will offer the most utility for future projects.
Characterization: Collect detailed information on each mutant to document its behavior.

Selection

The Parts Registry has a wide selection of basic parts that are good candidates for part family expansion. This includes promoters, repressors, reporter proteins, and many others. For our process to work properly, selected parts must contain standard VF2 and VR sites around the region of interest.

Ideal parts are around 200 base pairs or more in length, as smaller parts show reduced levels of transformation success. Part selection is also key to the success of later screening and characterization steps: measuring the activity of parts often requires the use of a fluorescent reporter like GFP, so your parts must affect the expression of this reporter in some way. For example, promoter mutants can be used to transcribe different levels of reporter mRNA, and differences in the activity of reporter mutants can be measured directly.

We also recommend that parts be selected with their future utility in mind -- we chose to work with repressible promoters because they are frequently used in designing genetic circuits. This will help frame the paramater space over which mutants will be selected for final characterization, and helps judge the amount of mutagenesis required to achieve good mutant library resolution.

Mutagenesis

Mutagenesis creates the genetic variation that leads to changes in part behavior. This can be achieved in a number of ways, but we designed this process with the use of our suped-up error-prone PCR protocol in mind. This protocol has been optimized specifically for creating mutants of BrioBrick parts: it uses standard VF2 and VR primers, produces a large number of mutations per reaction for rapid library generation and visual screening, and it uses materials that are already present in most iGEM team labs.

Since the degree of mutation required to produce desirable levels of phenotype variation is not generally known before this step has been completed, we suggest performing several rounds of mutagenic PCR in succession, saving the products from each reaction, then digesting, ligating and transforming the results separately. This will produce plates of mutant transformants at different degrees of mutation from wild-type.

We found that our protocol produces about 1 to 7 base pair mutations per round of error-prone PCR, which was enough to visually identify GFP (~800bp) mutants on transformation plates after just one round and LacI promoter mutants (~200bp) after three rounds. We also observed a qualitative increase in successfully transformed colonies when we used a PCR purification kit on our PCR products before cutting them with restriction enzymes.