Team:UANL Mty-Mexico/Contributions/Photochassis

From 2011.igem.org

(Difference between revisions)
Line 88: Line 88:
<div class="br2"></div>             
<div class="br2"></div>             
       </div>
       </div>
-
<p>Since light induction is becoming increasingly used in synthetic biology, we decided to create a built-in light induction system in <i>E. coli </i>through chromosome insertion<i>.</i> Avoiding the need of any extra-chromosomal DNA when light-inducing gene expression offers several advantages to the researcher. We therefore propose these modified <i>E. coli</i> strains as photochassis that could make useful tools in the field.</p>
+
<p>Since light induction is becoming increasingly used in synthetic biology, we decided to create a built-in light induction system in <i>E. coli </i>through chromosome insertion<i>.</i> Avoiding the need of any extra-chromosomal DNA when light-inducing gene expression offers several advantages to the researcher. We therefore propose these modified <i>E. coli</i> strains as photochassis that could make useful tools in the field.</p>
<p>Chromosome integration will be performed through a two-step method for the insertion of large DNA fragments into any desired location in the <i>E. coli </i>chromosome, designed by Kuhlman and Cox<a href="#References" class="references-link">[1]</a>. Light induction genes will be obtained from plasmids constructed by Dr. Jeff J. Tabor <i>et al.</i><a href="#References" class="references-link">[2]</a>.</p>
<p>Chromosome integration will be performed through a two-step method for the insertion of large DNA fragments into any desired location in the <i>E. coli </i>chromosome, designed by Kuhlman and Cox<a href="#References" class="references-link">[1]</a>. Light induction genes will be obtained from plasmids constructed by Dr. Jeff J. Tabor <i>et al.</i><a href="#References" class="references-link">[2]</a>.</p>
<p>Ideally, three photochassis will be built: the first enabling green light induction, the second enabling red-light induction, and the third enabling both green and red lights induction in the same cell. A common chromophore is shared by the three strains. All genes and biobricks used for this purpose are listed at the bottom of the page.</p>
<p>Ideally, three photochassis will be built: the first enabling green light induction, the second enabling red-light induction, and the third enabling both green and red lights induction in the same cell. A common chromophore is shared by the three strains. All genes and biobricks used for this purpose are listed at the bottom of the page.</p>
Line 108: Line 108:
<a href="https://static.igem.org/mediawiki/igem.org/3/31/Red.png" rel="lightbox" title="
<a href="https://static.igem.org/mediawiki/igem.org/3/31/Red.png" rel="lightbox" title="
<b>Red Photochassis. </b>Genes ho1 and pcyA are responsible for the chromophore synthesis. Cph8 codes for the chimaeric red-light receptor. These three genes are constitutively expressed. Mnt repressor is expressed from pOmpC promoter, which stops being induced in presence of red-light. It is therefore used as a NOT-gate to regulate expression from pMnt.">
<b>Red Photochassis. </b>Genes ho1 and pcyA are responsible for the chromophore synthesis. Cph8 codes for the chimaeric red-light receptor. These three genes are constitutively expressed. Mnt repressor is expressed from pOmpC promoter, which stops being induced in presence of red-light. It is therefore used as a NOT-gate to regulate expression from pMnt.">
-
<img src="https://static.igem.org/mediawiki/igem.org/3/31/Red.png"width="650" height="300" alt="Red photochassis" align="center">
+
<img src="https://static.igem.org/mediawiki/igem.org/3/31/Red.png"width="650" height="353" alt="Red photochassis" align="center">
</a>
</a>
<span class="img-holder-text"><b>Red photochassis.</b></span>
<span class="img-holder-text"><b>Red photochassis.</b></span>
Line 130: Line 130:
<a href="https://static.igem.org/mediawiki/igem.org/7/72/Green.png" rel="lightbox" title="
<a href="https://static.igem.org/mediawiki/igem.org/7/72/Green.png" rel="lightbox" title="
<b>Green Light Photochassis. </b>Genes ho1 and pcyA are responsible for the chromophore synthesis. CcaS and CcaR code for the two-component green-light receptor. Absorption of green light increases the rate of CcaS autophosphorylation, phosphotransfer to CcaR, and transcription from the promoter of the CpcG2 promoter[2]. All four genes are constitutively expressed.">
<b>Green Light Photochassis. </b>Genes ho1 and pcyA are responsible for the chromophore synthesis. CcaS and CcaR code for the two-component green-light receptor. Absorption of green light increases the rate of CcaS autophosphorylation, phosphotransfer to CcaR, and transcription from the promoter of the CpcG2 promoter[2]. All four genes are constitutively expressed.">
-
<img src="https://static.igem.org/mediawiki/igem.org/7/72/Green.png"width="650" height="300" alt="Green photochassis" align="center">
+
<img src="https://static.igem.org/mediawiki/igem.org/7/72/Green.png"width="650" height="353" alt="Green photochassis" align="center">
</a>
</a>
<span class="img-holder-text"><b>Green photochassis.</b>
<span class="img-holder-text"><b>Green photochassis.</b>
Line 147: Line 147:
       </div>
       </div>
-
<p><b>Red and Green light Photochassis. </b>Assembles both constructions above with only one chromophore synthesis complex. </p>
+
<p><b>Red and Green light Photochassis. </b>Assembles both constructions above with only one chromophore synthesis complex. </p>
<center>
<center>
Line 241: Line 241:
       </td>
       </td>
       <td valign="top">
       <td valign="top">
-
         <p>Tabor <i>et al</i>. (2010)</p>
+
         <p>Tabor <i>et al</i>. (2010)</p>
       </td>
       </td>
     </tr>
     </tr>
Line 252: Line 252:
       </td>
       </td>
       <td valign="top">
       <td valign="top">
-
         <p>Tabor <i>et al</i>. (2010)</p>
+
         <p>Tabor <i>et al</i>. (2010)</p>
       </td>
       </td>
     </tr>
     </tr>
Line 263: Line 263:
       </td>
       </td>
       <td valign="top">
       <td valign="top">
-
         <p>Tabor <i>et al</i>. (2010)</p>
+
         <p>Tabor <i>et al</i>. (2010)</p>
       </td>
       </td>
     </tr>
     </tr>
Line 320: Line 320:
       </td>
       </td>
       <td valign="top">
       <td valign="top">
-
         <p>Tabor <i>et al</i>. (2010)</p>
+
         <p>Tabor <i>et al</i>. (2010)</p>
       </td>
       </td>
     </tr>
     </tr>
Line 331: Line 331:
       </td>
       </td>
       <td valign="top">
       <td valign="top">
-
         <p>Tabor <i>et al</i>. (2010)</p>
+
         <p>Tabor <i>et al</i>. (2010)</p>
       </td>
       </td>
     </tr>
     </tr>
Line 342: Line 342:
       </td>
       </td>
       <td valign="top">
       <td valign="top">
-
         <p>Tabor <i>et al</i>. (2010)</p>
+
         <p>Tabor <i>et al</i>. (2010)</p>
       </td>
       </td>
     </tr>
     </tr>
Line 353: Line 353:
       </td>
       </td>
       <td valign="top">
       <td valign="top">
-
         <p>Tabor <i>et al</i>. (2010)</p>
+
         <p>Tabor <i>et al</i>. (2010)</p>
       </td>
       </td>
     </tr>
     </tr>

Revision as of 16:03, 27 September 2011

banner-main iGEM-logo
Team: UANL_Mty-Mexico Team: UANL_Mty-Mexico
Contributions
Photochassis

Since light induction is becoming increasingly used in synthetic biology, we decided to create a built-in light induction system in E. coli through chromosome insertion. Avoiding the need of any extra-chromosomal DNA when light-inducing gene expression offers several advantages to the researcher. We therefore propose these modified E. coli strains as photochassis that could make useful tools in the field.

Chromosome integration will be performed through a two-step method for the insertion of large DNA fragments into any desired location in the E. coli chromosome, designed by Kuhlman and Cox[1]. Light induction genes will be obtained from plasmids constructed by Dr. Jeff J. Tabor et al.[2].

Ideally, three photochassis will be built: the first enabling green light induction, the second enabling red-light induction, and the third enabling both green and red lights induction in the same cell. A common chromophore is shared by the three strains. All genes and biobricks used for this purpose are listed at the bottom of the page.


Red Photochassis

Red Photochassis. Genes ho1 and pcyA are responsible for the chromophore synthesis. Cph8 codes for the chimaeric red-light receptor[3]. These three genes are constitutively expressed. Mnt repressor is expressed from pOmpC promoter, which stops being induced in presence of red-light. It is therefore used as a NOT-gate to regulate expression from pMnt (see Circuit Cell One).

Red photochassis Red photochassis.
Green Photochassis

Green Light Photochassis. Genes ho1 and pcyA are responsible for the chromophore synthesis. CcaS and CcaR code for the two-component green-light receptor. Absorption of green light increases the rate of CcaS autophosphorylation, phosphotransfer to CcaR, and transcription from the promoter of the CpcG2 promoter[2]. All four genes are constitutively expressed.

Green photochassis Green photochassis.
Red and Green Photochassis

Red and Green light Photochassis. Assembles both constructions above with only one chromophore synthesis complex.

Red/Green photochassis Red/Green photochassis.
Parts


Red photocassette

Part

Size

Source

pConst. + RBS

58 bp

K081005

Double terminator (TT)

129 bp

B0015

pOmpC

108 bp

R0082

mnt

288 bp

C0072

ho1

723 bp

Tabor et al. (2010)

pcyA

747 bp

Tabor et al. (2010)

cph8

2235 bp

Tabor et al. (2010)





Green photocassette

Part

Size

Source

pConst. + RBS

58 bp

K081005

Double terminator (TT)

129 bp

B0015

ho1

723 bp

Tabor et al. (2010)

pcyA

747 bp

Tabor et al. (2010)

CcaS

2262 bp

Tabor et al. (2010)

CcaR

705 bp

Tabor et al. (2010)




References
  1. Kuhlman TE, Cox EC (2010) Site-specific chromosomal integration of large synthetic constructs Nucleic Acids Res 38:e92.
  2. Tabor JJ, Levskaya A, Voigt CA (2010) Multichromatic Control of Gene Expression in Escherichia coli. J Mol Biol 405:315-324.
  3. Levskaya A Levskaya A, Chevalier AA, Tabor JJ, Simpson ZB, Lavery LA, Levy M, Davidson EA, Scouras A, Ellington AD, Marcotte EM, Christopher AV (2005) Engineering Escherichia coli to see light. Nature 438:441-442.

OurSymbol

Team: UANL_Mty-Mexico