Team:HKUST-Hong Kong/content.html

From 2011.igem.org

(Difference between revisions)
Line 85: Line 85:
<TR>
<TR>
<TH ROWSPAN=3 BGCOLOR="#182828">
<TH ROWSPAN=3 BGCOLOR="#182828">
-
<img src="https://static.igem.org/mediawiki/2011/1/19/HKUST_Index_logo.jpg"  width=240 height=180 align=left style="margin: 20px 20px 20px 20px">
+
<img src="https://static.igem.org/mediawiki/2011/1/19/HKUST_Index_logo.jpg"  width=240 align=left style="margin: 20px 20px 20px 20px">
<br>
<br>
<p align=justify>
<p align=justify>

Revision as of 15:54, 5 October 2011


Greeting from the 2011 HKUST iGEM Team!

Welcome to our Wiki page!

This is the 4th time HKUST has participated in this international synthetic biology competition.
Thanks to our instructors' helpful advice, considerate advisors, and great enthusiasm and effort from all member of the HKUST iGEM 2011 team, we enjoyed a fantastic summer working with something that we feel will make a difference.

You may visit our Gallery to see what we do in the lab!


Our Project

Overview | Data Page
Experiments and Results
Strain Construction | Culture Tests | Modeling
Miscellaneous
Notebook


iGEM Resources

Acknowledgements
The Team
iGEM Member List | Contributions
Achievements
Medal Requirements | BioSafety
BioBricks
Master List & Characterization Data



Human Practice

Workshop | Survey

Project Abstract


It has often been assumed that when an antibiotic is introduced to a bacterial community, only cells that carry resistance genes will survive and proliferate. However, recent findings suggest that communities with a mixture of highly resistant (HR) and less resistant (LR) individuals are able to survive through ‘charity’ by HR individuals, which support LR individuals through indole signalling.


Our team aims to interfere with this signalling through introducing a disruptor E. coli into the bacterial community. This new strain will be able to degrade indole using a mutated toluene-4-monooxygenase (T4MO). We hypothesize that LR cells in the community deprived of indole will undergo elimination at lower antibiotic concentrations. If this demonstration is successful, indole degradation might prove to be a possible strategy in boosting antibiotics effectiveness in medical practice against bacteria that rely on such signalling.


Along the way, we will also create a new strain of E. coli that utilizes an essential gene (nadE) as the selection marker for transformation, allowing antibiotics-free transformation and plasmid maintenance for regular laboratory manipulation. This new transformation method can be adopted for future iGEM teams, reducing their use of antibiotics without increasing the complexity of the transformation protocol.



Home

Our Project

Overview | Data Page
Experiments and Results
Strain Construction | Culture Tests | Modeling
Miscellaneous
Notebook

iGEM Resources

Acknowledgements
The Team
iGEM Member List | Contributions
Achievements
Medal Requirements | BioSafety
BioBricks
Master List & Characterization Data

Human Practice

Workshop | Survey